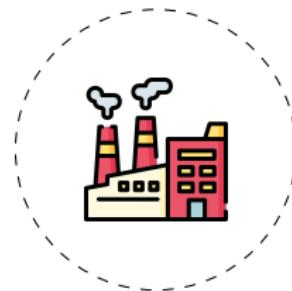


Growing a stochastic sub-tree for mixed-integer linear programming under uncertainty

Zoé Fournier, Bernardo Freitas Paulo Da Costa, Vincent Leclère, Mervé Bodur
ISMP - July 2024

MOTIVATION

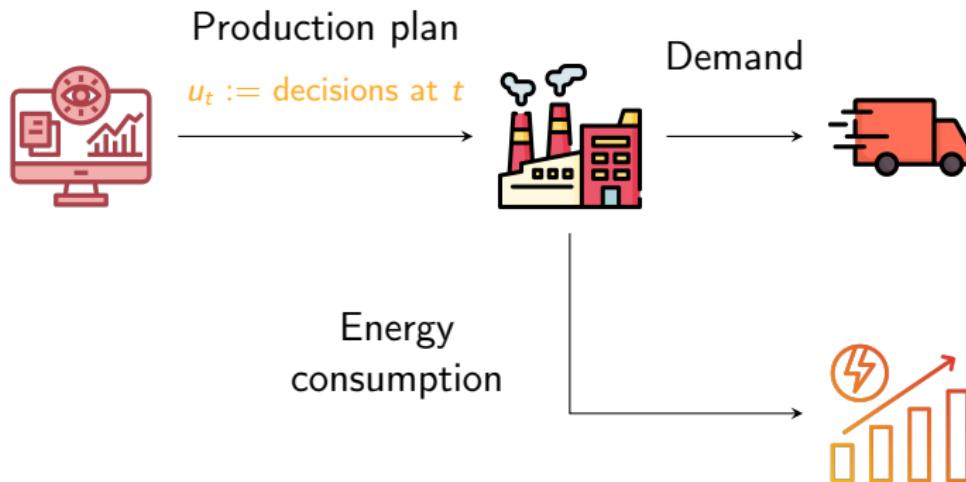


\mathcal{I} machines, \mathcal{J} products
Process and Physical constraints

Example

Optimize the production plan of a factory with uncertain demand and energy prices.

MOTIVATION

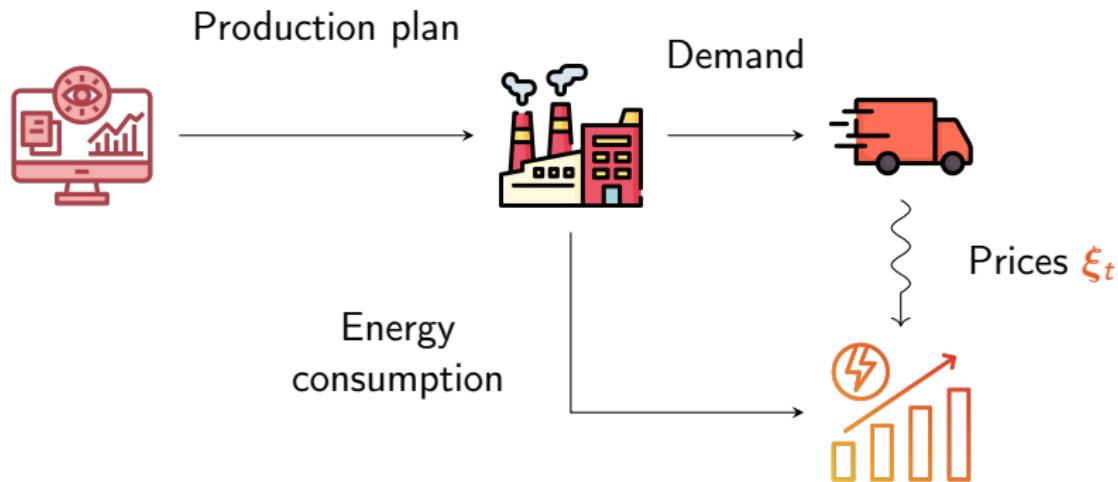


Example

Optimize the production plan of a factory with uncertain demand and energy prices.

- ➡ **Decision variables:** when/how much to produce
- ➡ **Costs:** energy purchases

MOTIVATION



Example

Optimize the production plan of a factory with uncertain demand and energy prices.

- ➡ **Randomness:** uncertain energy prices
- ➡ **Scale:** $T = 24$, $|\mathcal{I}| = 2$, $|\mathcal{J}| = 3$

SOLVING MiSLP

Multistage integer Stochastic Linear Problems

$$(P) \quad \min_{x, u, b}$$

$$x_{t+1} = F_{t+1}(x_t, u_t, b_t, \xi_t) \quad \forall t$$

- **State variables:** x_{t+1} follows the dynamic F_{t+1}

Multistage integer Stochastic Linear Problems

$$(P) \quad \min_{x, u, b}$$

$$x_{t+1} = F_{t+1}(x_t, u_t, b_t, \xi_t) \quad \forall t$$

$$u_t \in \mathcal{U}(x_t, \xi_t) \subset \mathbb{R}^{n_u} \quad \forall t$$

$$b_t \in \mathcal{B}(x_t, \xi_t) \subset \{0, 1\}^{n_b} \quad \forall t$$

- **Continuous Control** u_t continuous
- **Integer Control** b_t binary

Multistage integer Stochastic Linear Problems

$$(P) \quad \min_{\mathbf{x}, \mathbf{u}, \mathbf{b}}$$

$$\mathbf{x}_{t+1} = F_{t+1}(\mathbf{x}_t, \mathbf{u}_t, \mathbf{b}_t, \xi_t) \quad \forall t$$

$$\mathbf{u}_t \in \mathcal{U}(\mathbf{x}_t, \xi_t) \subset \mathbb{R}^{n_u} \quad \forall t$$

$$\mathbf{b}_t \in \mathcal{B}(\mathbf{x}_t, \xi_t) \subset \{0, 1\}^{n_b} \quad \forall t$$

$$\sigma(\mathbf{u}_t, \mathbf{b}_t) \subset \sigma(\xi_1, \dots, \xi_t) \quad \forall t$$

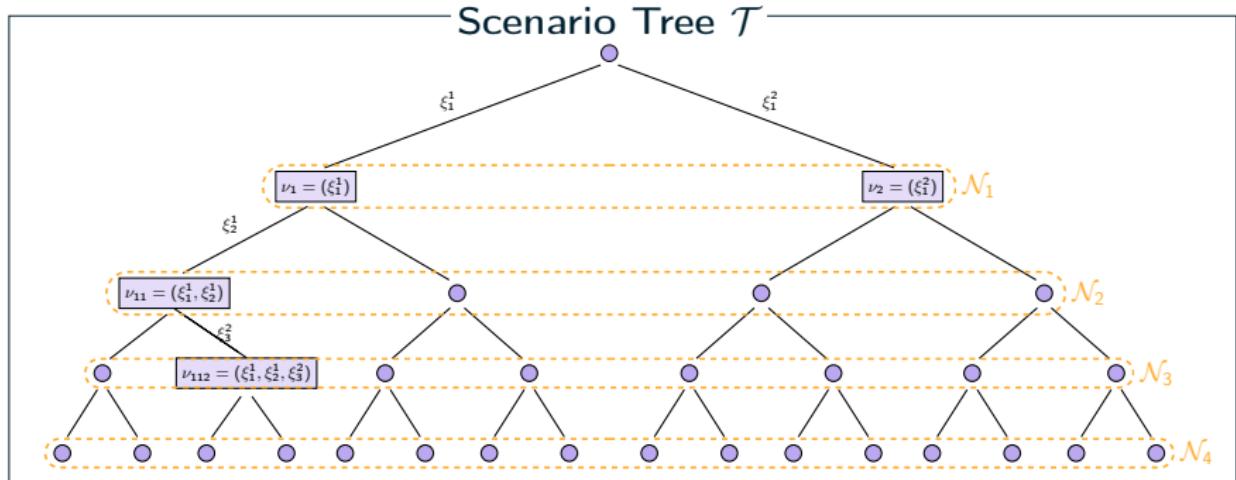
- **Randomness** $(\xi_t)_{t \in [T]}$ is a sequence of finitely supported random variables
- **Non-anticipativity constraints:** we cannot know what will happen in the future

Multistage integer Stochastic Linear Problems

$$(P) \quad \min_{\mathbf{x}, \mathbf{u}, \mathbf{b}} \quad \mathbb{E} \left[\sum_{t=1}^T L_t(\mathbf{x}_{t-1}, \mathbf{u}_t, \mathbf{b}_t, \xi_t) \right]$$
$$\mathbf{x}_{t+1} = F_{t+1}(\mathbf{x}_t, \mathbf{u}_t, \mathbf{b}_t, \xi_t) \quad \forall t$$
$$\mathbf{u}_t \in \mathcal{U}(\mathbf{x}_t, \xi_t) \subset \mathbb{R}^{n_u} \quad \forall t$$
$$\mathbf{b}_t \in \mathcal{B}(\mathbf{x}_t, \xi_t) \subset \{0, 1\}^{n_b} \quad \forall t$$
$$\sigma(\mathbf{u}_t, \mathbf{b}_t) \subset \sigma(\xi_1, \dots, \xi_t) \quad \forall t$$

- **Objective** Minimize expected costs
- **Instantaneous cost:** L_t

SOME NOTATIONS



- A **scenario** $(\xi_t)_{t \in [T]}$ is a realization of $(\xi_t)_{t \in [T]}$.
- The **scenario tree \mathcal{T}** is the collection of all scenarios.
- \mathcal{N}_t is the set of nodes in \mathcal{T} of depth t .
- A **node** $\nu := (\xi_1, \xi_2, \dots, \xi_T)$ reads all its ancestors.

REFORMULATION

We can always reformulate (P) as a large deterministic MILP:

MiSLP: extensive formulation

$$\begin{aligned} (P_{\text{ext}}) \quad \min_{x_{\nu}, u_{\nu}, b_{\nu}} \quad & \sum_{t=1}^T \sum_{\nu \in \mathcal{N}_t} \pi_{\nu} L_t(x_{\nu}, u_{\nu}, b_{\nu}, \xi_{\nu}) \\ x_{\nu} = F_{\nu}(x_{a(\nu)}, u_{a(\nu)}, b_{a(\nu)}, \xi_{a(\nu)}) \quad & \forall \nu \\ u_{\nu} \in \mathcal{U}(x_{\nu}, \xi_{\nu}) \quad & \forall \nu \\ b_{\nu} \in \mathcal{B}(x_{\nu}, \xi_{\nu}) \subset \{0, 1\}^{n_b} \quad & \forall \nu \end{aligned}$$

- all variables are declined on each node ν
- the dynamics depend on the parent $a(\nu)$ of ν
- **Intractable:** if ξ_t is discretized with 10 values, $|\mathcal{T}| = 10^{24}$

PRESENTATION OUTLINE

State-of-the-art

Dynamic Programming Principles

Current Numerical Algorithms

Stochastic Dual Dynamic Programming (SDDP)

Lower approximations of MiSLP

Numerical Results

Improving performances

PRESENTATION OUTLINE

State-of-the-art

Dynamic Programming Principles

Current Numerical Algorithms

Stochastic Dual Dynamic Programming (SDDP)

Lower approximations of MiSLP

Numerical Results

Improving performances

DYNAMIC PROGRAMMING PRINCIPLES

$V_\nu(x)$:= optimal cost from node ν and state x .

DYNAMIC PROGRAMMING PRINCIPLES

$V_\nu(x)$:= optimal cost from node ν and state x .

Dynamic Programming: cost-to-go functions

II

DYNAMIC PROGRAMMING PRINCIPLES

$V_\nu(x) :=$ optimal cost from node ν and state x .

Dynamic Programming: cost-to-go functions

||

➡ with stagewise independence hypothesis, $V_\nu(x) = V_t(x)$

PRESENTATION OUTLINE

State-of-the-art

Dynamic Programming Principles

Current Numerical Algorithms

Stochastic Dual Dynamic Programming (SDDP)

Lower approximations of MiSLP

Numerical Results

Improving performances

CURRENT NUMERICAL ALGORITHMS

- Stochastic Dynamic Programming (SDP)

Principle: we solve the problem with dynamic equations, by discretizing continuous state variables.

Pros: few assumptions, easily implemented.

Cons: curse of dimensionality.

CURRENT NUMERICAL ALGORITHMS

- Stochastic Dynamic Programming (SDP)

Principle: we solve the problem with dynamic equations, by discretizing continuous state variables.

Pros: few assumptions, easily implemented.

Cons: curse of dimensionality.

- Stochastic Dual Dynamic Programming (SDDP)

Principle: solves continuous multistage linear stochastic problems by constructing Benders-like cuts.

Pros: fast in practice, and theoretical guarantee.

Cons: cannot handle integer variables.

CURRENT NUMERICAL ALGORITHMS

- Stochastic Dynamic Programming (SDP)

Principle: we solve the problem with dynamic equations, by discretizing continuous state variables.

Pros: few assumptions, easily implemented.

Cons: curse of dimensionality.

- Stochastic Dual Dynamic Programming (SDDP)

Principle: solves continuous multistage linear stochastic problems by constructing Benders-like cuts.

Pros: fast in practice, and theoretical guarantee.

Cons: cannot handle integer variables.

- Stochastic Dual Dynamic integer programming (SDDiP)

Principle: algorithm built on SDDP to solve multistage linear stochastic problems with only binary state variables.

Pros: theoretical guarantees.

Cons: slow iterations and convergence.

PRESENTATION OUTLINE

State-of-the-art

Dynamic Programming Principles

Current Numerical Algorithms

Stochastic Dual Dynamic Programming (SDDP)

Lower approximations of MiSLP

Numerical Results

Improving performances

Dynamic Programming: cost-to-go functions

$$V_t(x, \xi) = \min_{y, u} \quad L_t(x, u, \xi) + \theta \quad (2a)$$

$$y = F_t(x, u, \xi) \quad (2b)$$

$$u \in \mathcal{U}(y, \xi) \quad (2c)$$

$$\theta \geq f_{t+1, k} + g_{t+1, k}^T (y - x_{t+1, k}) \quad \forall k \quad (2d)$$

Assumptions

- stage-wise independence of noises
- Continuous variables, V_t is a **convex** function of x
 - ➡ V_t can be approximated as a **maximum of linear cuts**

SDDP: ALGORITHM

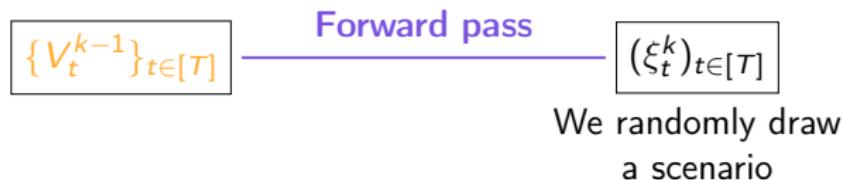
Iteration k

$$\{V_t^{k-1}\}_{t \in [T]}$$

We dispose of
current approximation

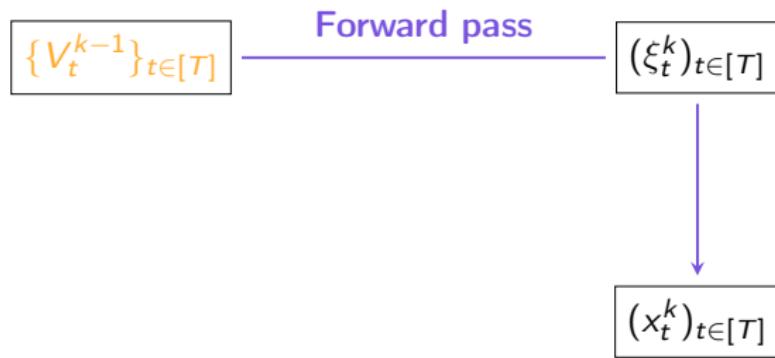
SDDP: ALGORITHM

Iteration k



SDDP: ALGORITHM

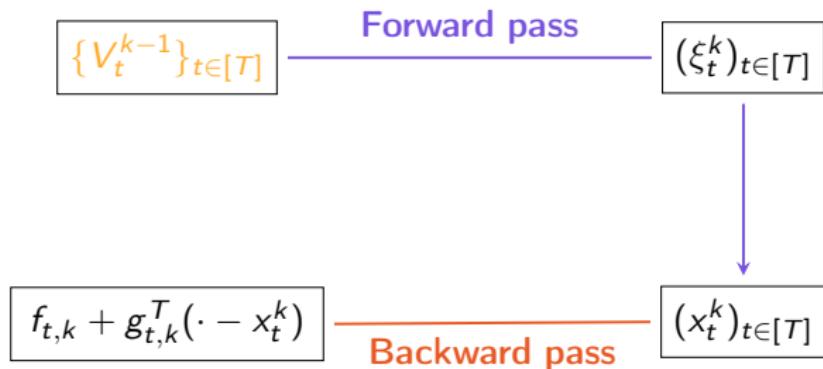
Iteration k



compute current optimal trajectory

SDDP: ALGORITHM

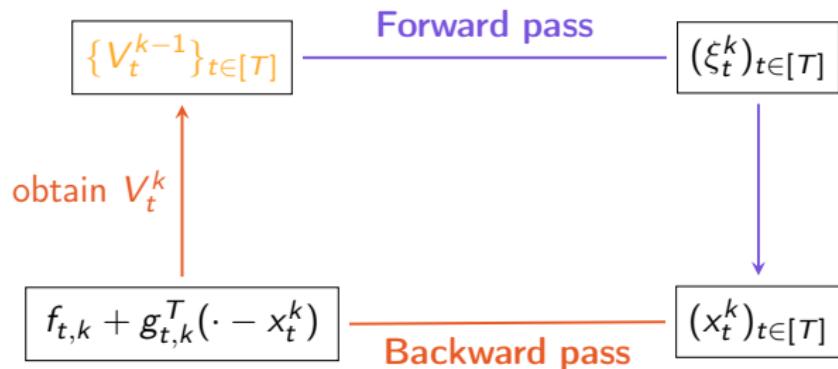
Iteration k



Compute new cuts to approximate of $\{V_t\}_{t \in [T]}$

SDDP: ALGORITHM

Iteration k



PRESENTATION OUTLINE

State-of-the-art

Lower approximations of MiSLP

Intuition: relax partially integrality

How to construct a partially relaxed sub-tree?

Numerical Results

Improving performances

PRESENTATION OUTLINE

State-of-the-art

Lower approximations of MiSLP

Intuition: relax partially integrality

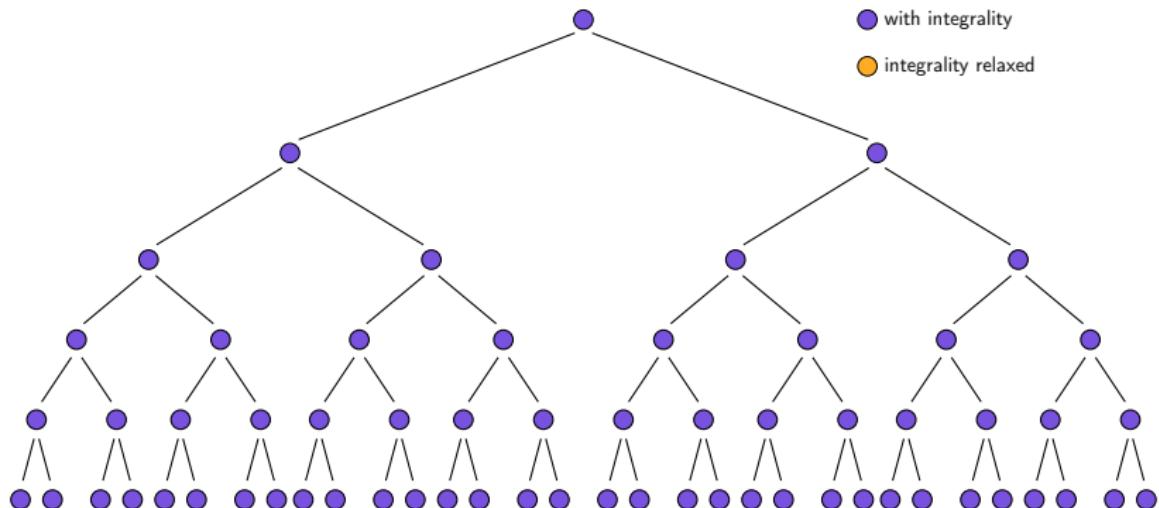
How to construct a partially relaxed sub-tree?

Numerical Results

Improving performances

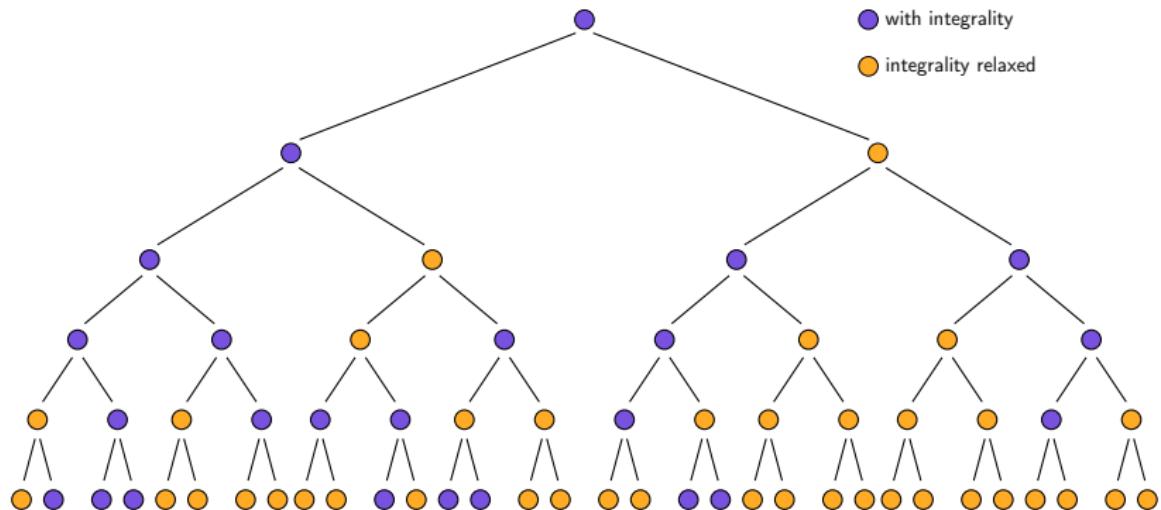
INTUITION

The full problem in its extensive formulation is **intractable**.



INTUITION

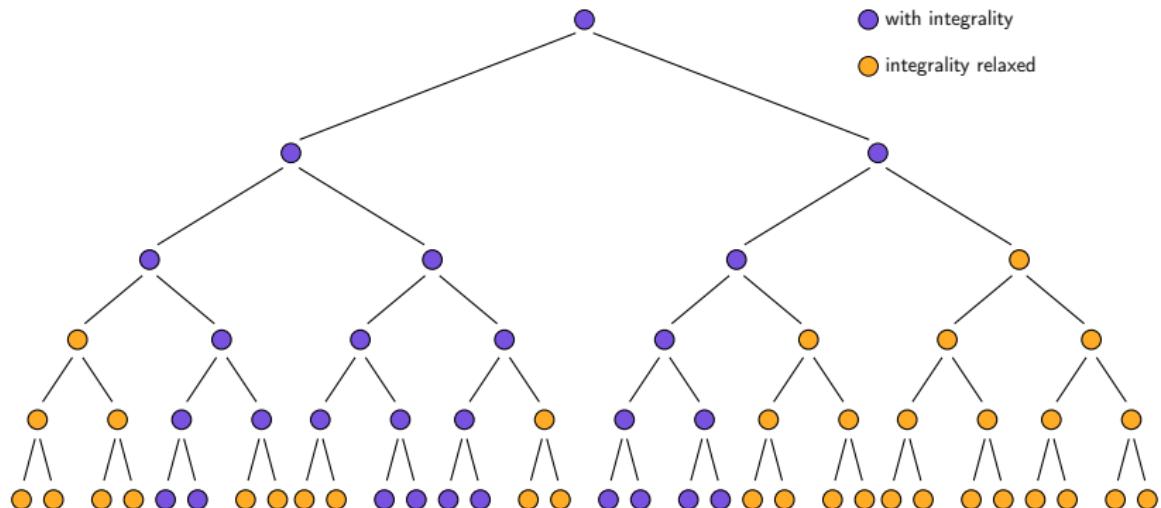
Idea: relax partially integrality.



➡ This problem is **easier** to solve, but still intractable.

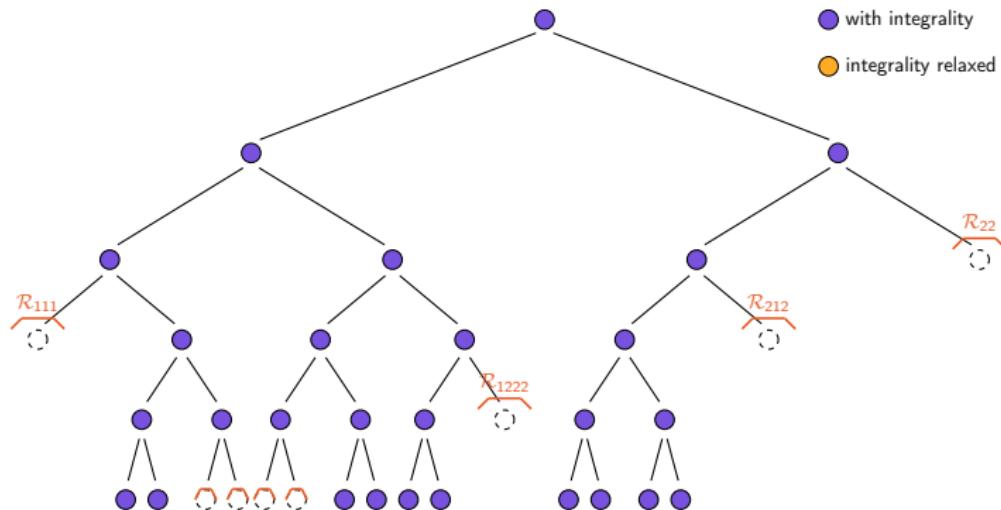
INTUITION

Depending on how we relax integrality, we can use **SDDP**.



INTUITION

Depending on how we relax integrality, we can use **SDDP**.



PRESENTATION OUTLINE

State-of-the-art

Lower approximations of MiSLP

Intuition: relax partially integrality

How to construct a partially relaxed sub-tree?

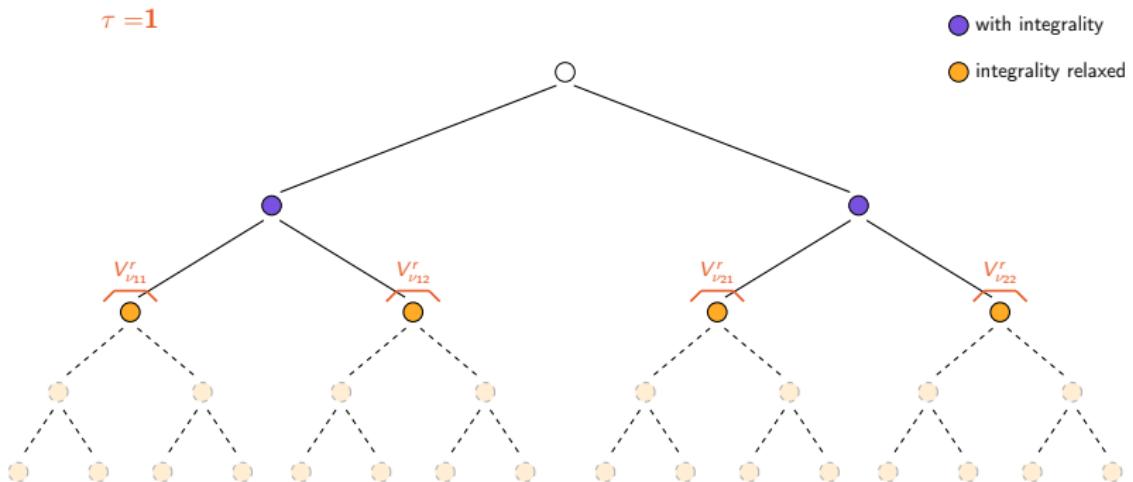
Numerical Results

Improving performances

HOW TO GROW THE SUB-TREE?

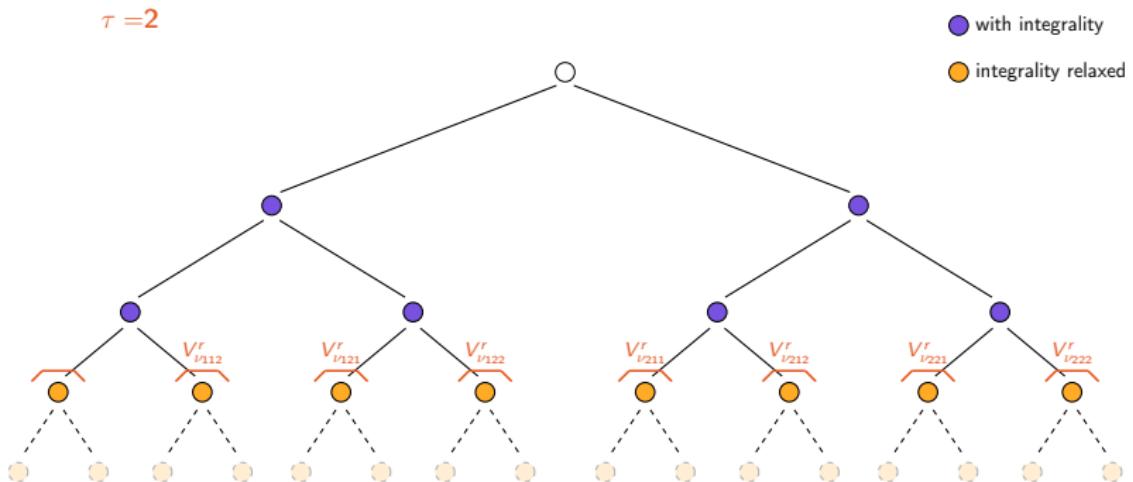
HOW TO GROW THE SUB-TREE?

1. We add time step per time step



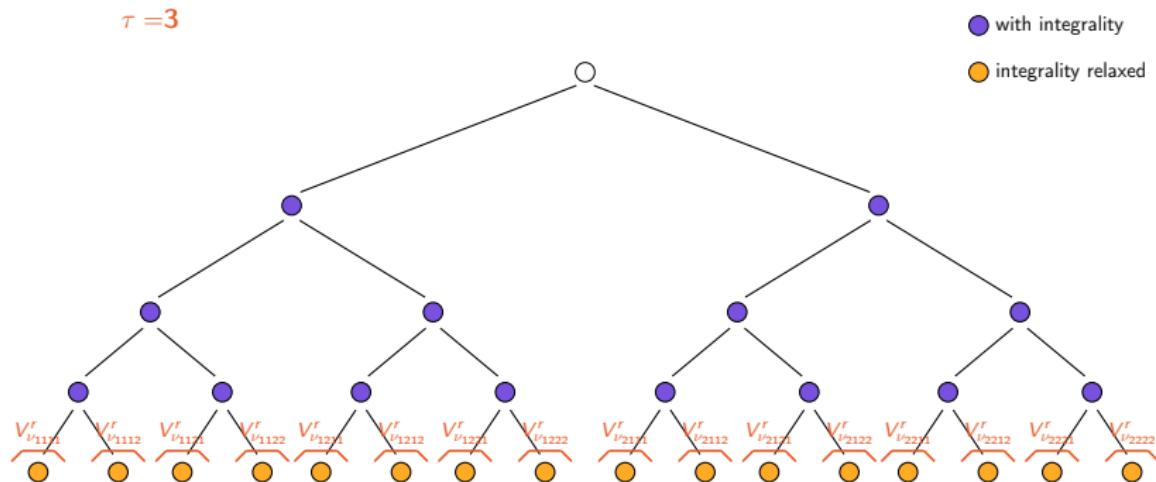
HOW TO GROW THE SUB-TREE?

1. We add time step per time step



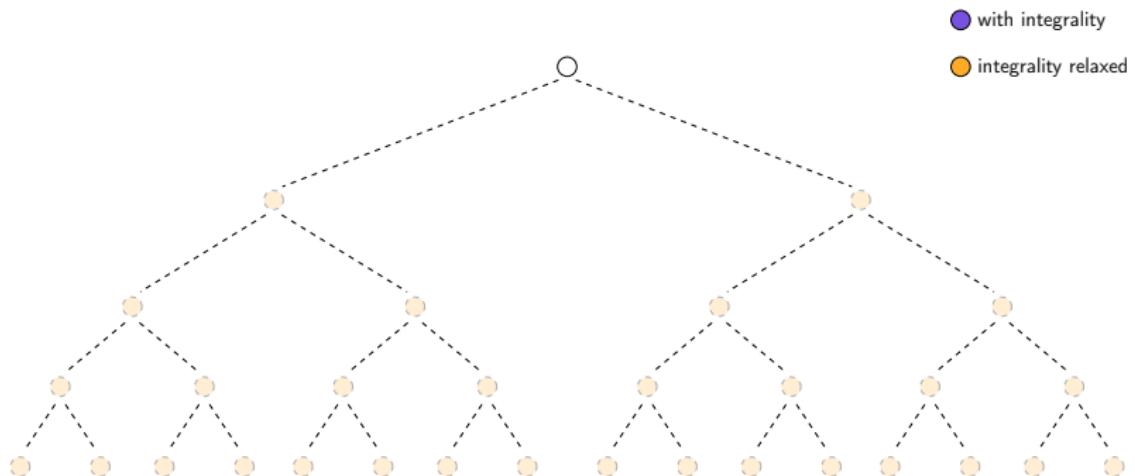
HOW TO GROW THE SUB-TREE?

1. We add time step per time step



HOW TO GROW THE SUB-TREE?

1. We add time step per time step
2. We randomly select a sub-tree of a given size N

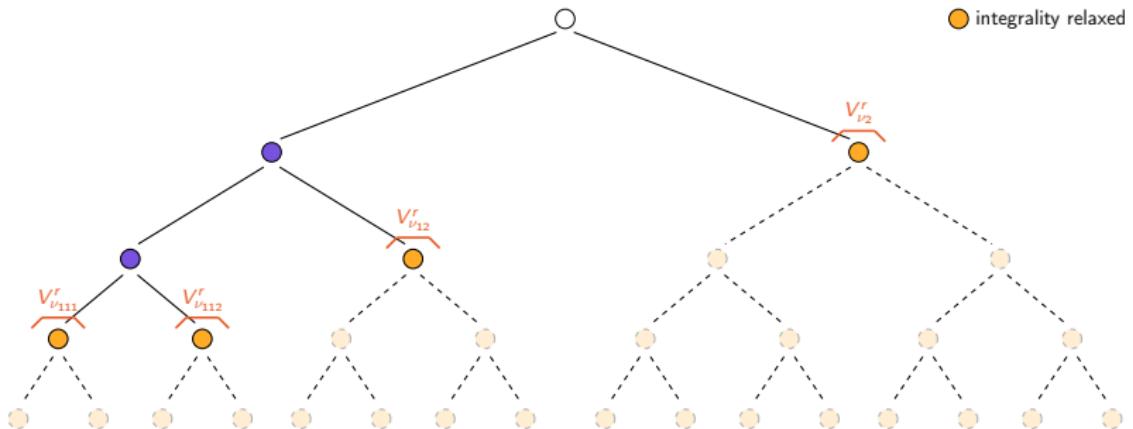


HOW TO GROW THE SUB-TREE?

1. We add time step per time step
2. We randomly select a sub-tree of a given size N

$N = 2$

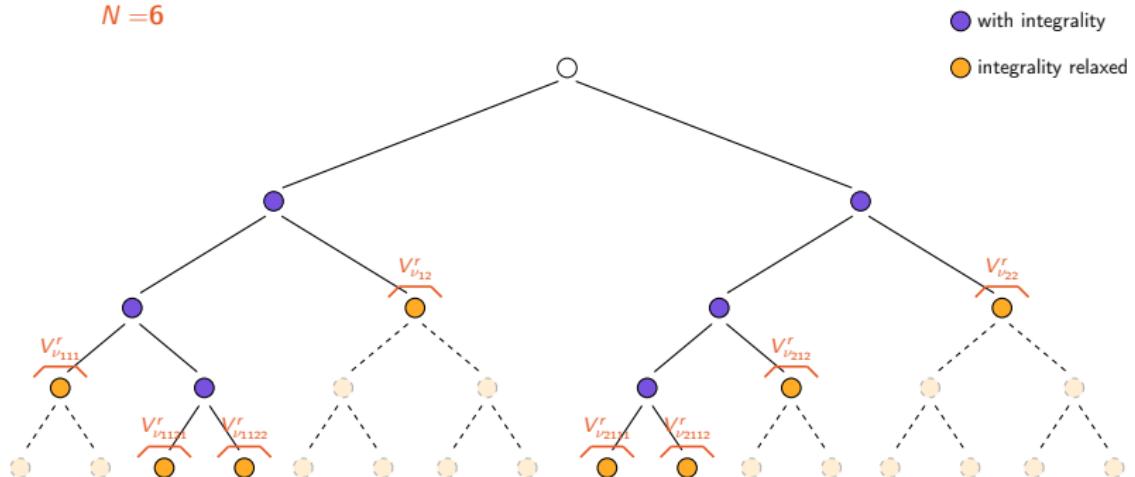
● with integrality
● integrality relaxed



HOW TO GROW THE SUB-TREE?

1. We add time step per time step
2. We randomly select a sub-tree of a given size N

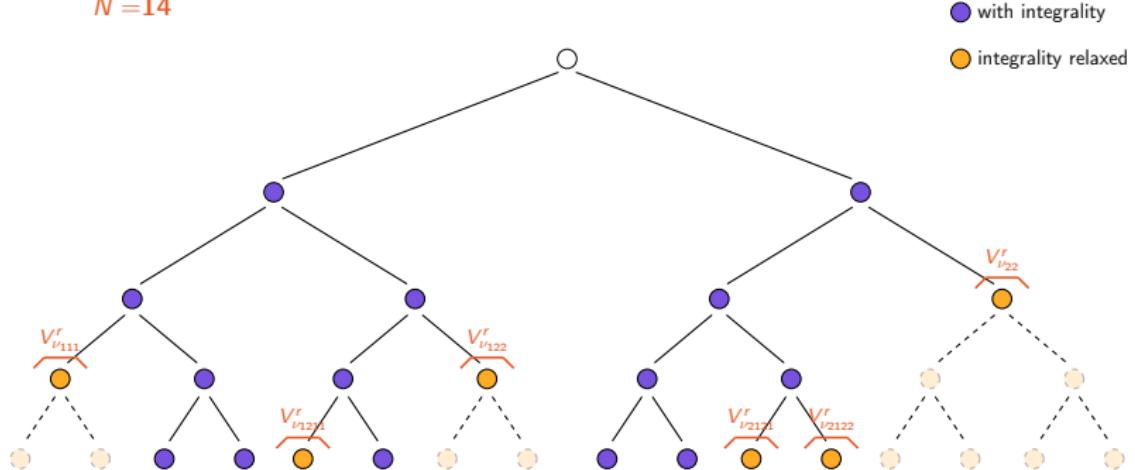
$N = 6$



HOW TO GROW THE SUB-TREE?

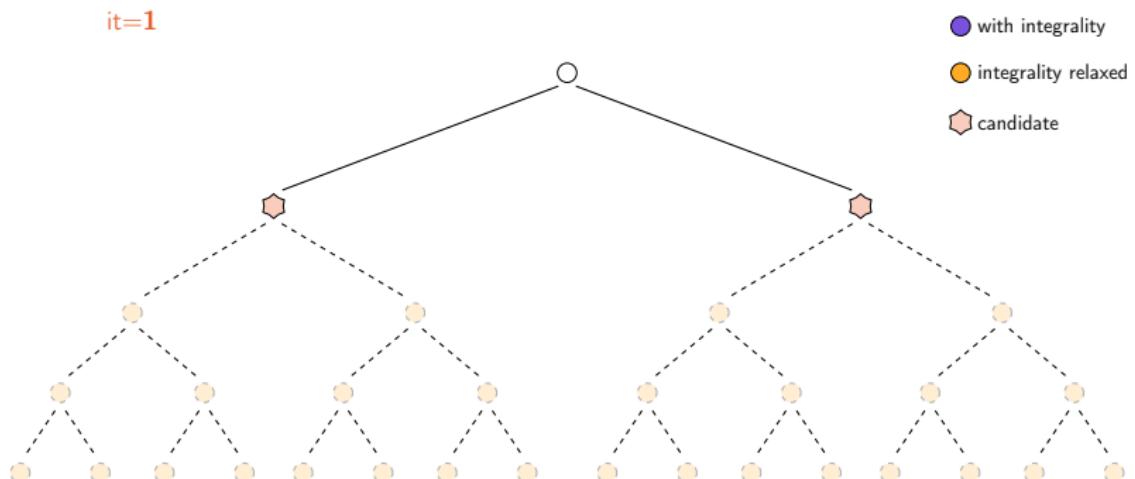
1. We add time step per time step
2. We randomly select a sub-tree of a given size N

$N = 14$



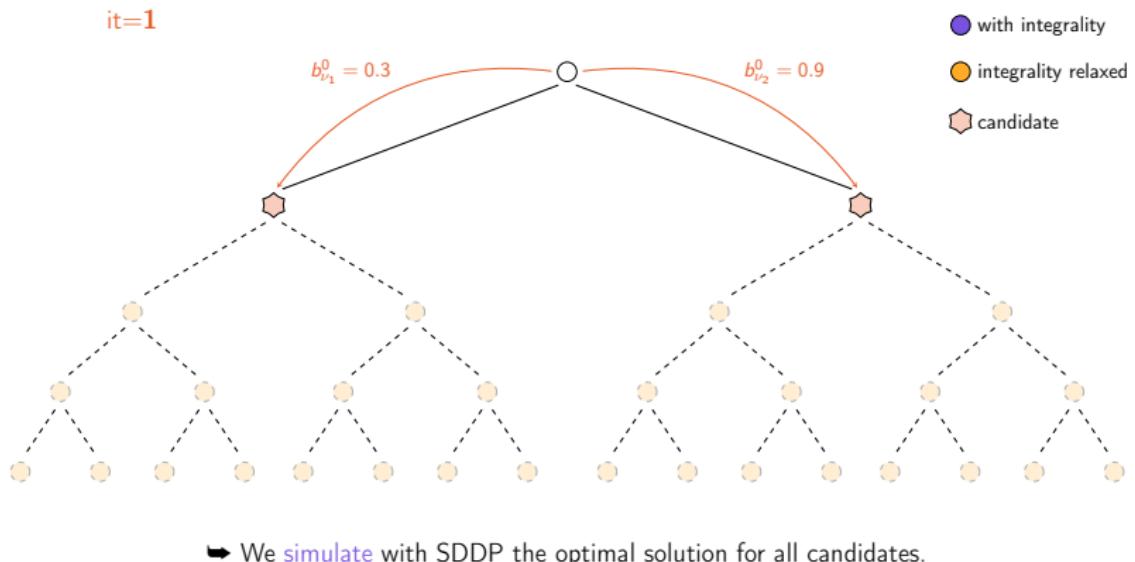
HOW TO GROW THE SUB-TREE?

1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality



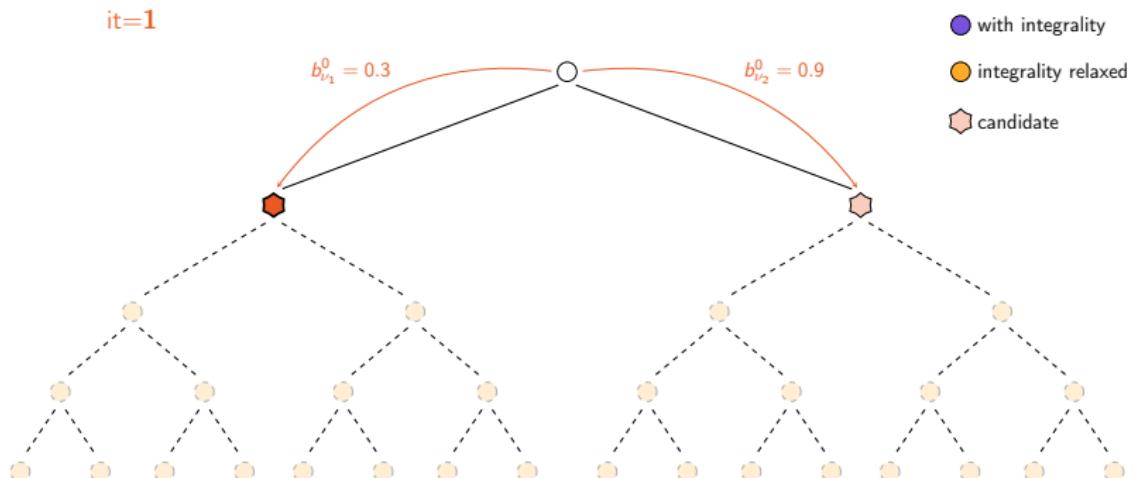
HOW TO GROW THE SUB-TREE?

1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality



HOW TO GROW THE SUB-TREE?

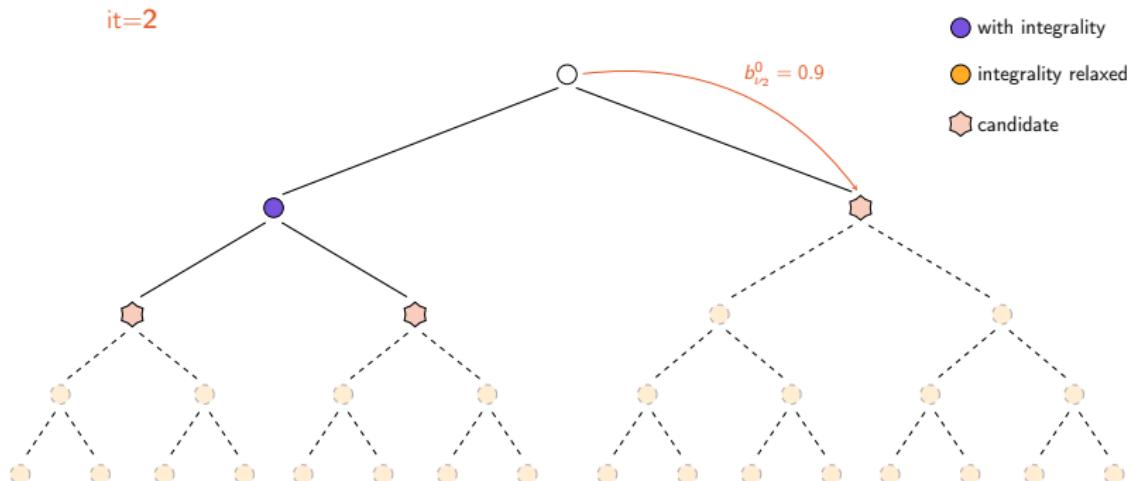
1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality



- We simulate with SDDP the optimal solution for all candidates.
- We choose the one furthest from integrality.

HOW TO GROW THE SUB-TREE?

1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality

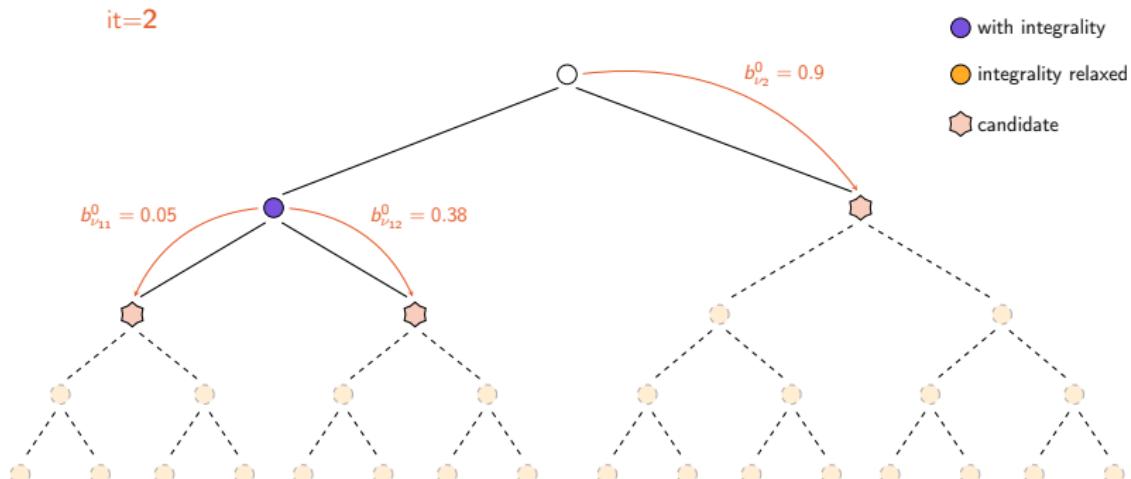


→ We simulate with SDDP the optimal solution for all candidates.

→ We choose the one furthest from integrality.

HOW TO GROW THE SUB-TREE?

1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality

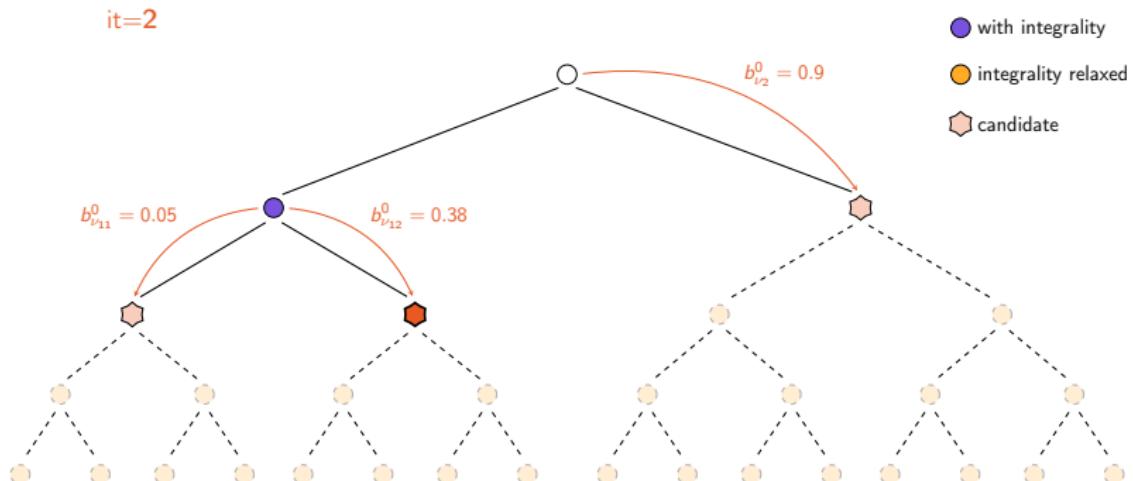


→ We simulate with SDDP the optimal solution for all candidates.

→ We choose the one furthest from integrality.

HOW TO GROW THE SUB-TREE?

1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality

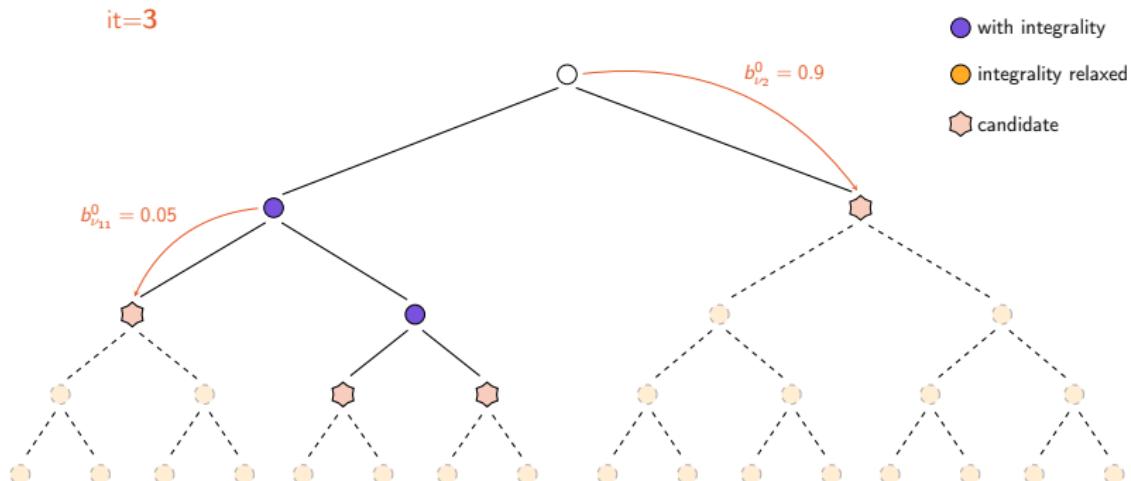


→ We simulate with SDDP the optimal solution for all candidates.

→ We choose the one furthest from integrality.

HOW TO GROW THE SUB-TREE?

1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality

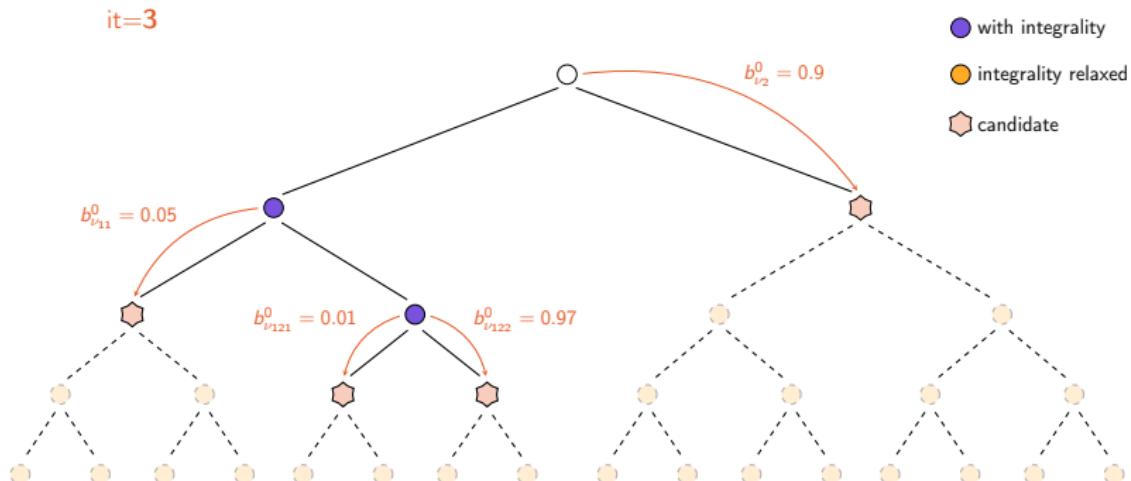


→ We simulate with SDDP the optimal solution for all candidates.

→ We choose the one furthest from integrality.

HOW TO GROW THE SUB-TREE?

1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality

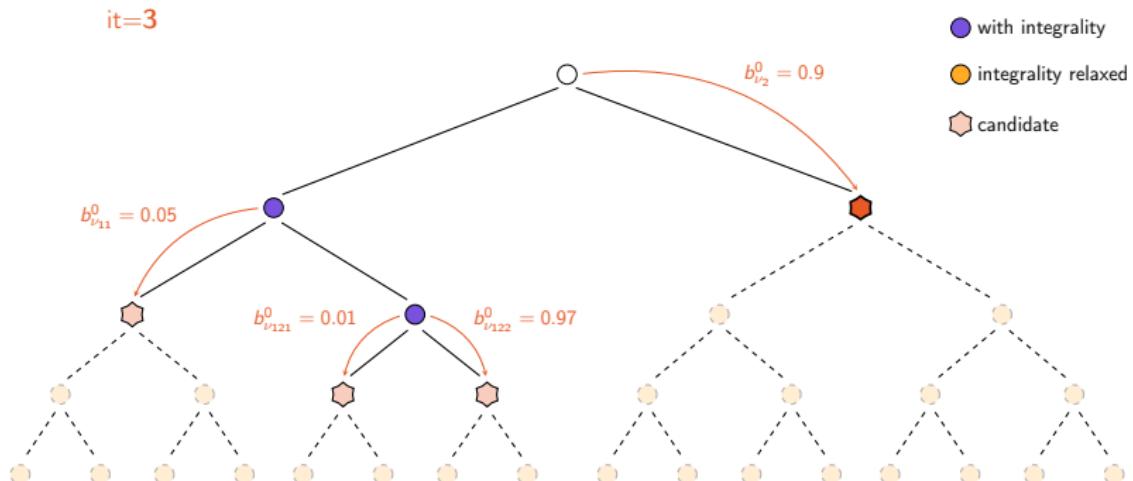


→ We simulate with SDDP the optimal solution for all candidates.

→ We choose the one furthest from integrality.

HOW TO GROW THE SUB-TREE?

1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality

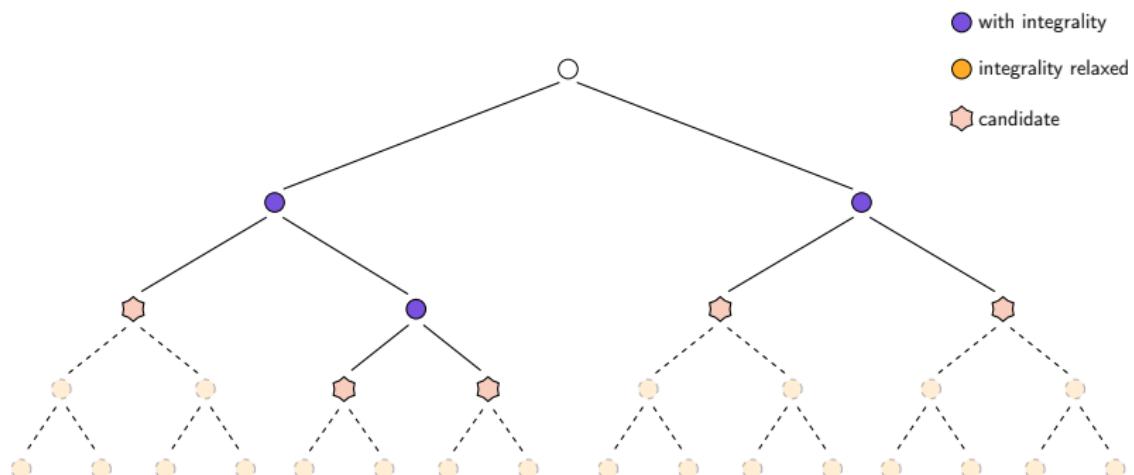


→ We simulate with SDDP the optimal solution for all candidates.

→ We choose the one furthest from integrality.

HOW TO GROW THE SUB-TREE?

1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality



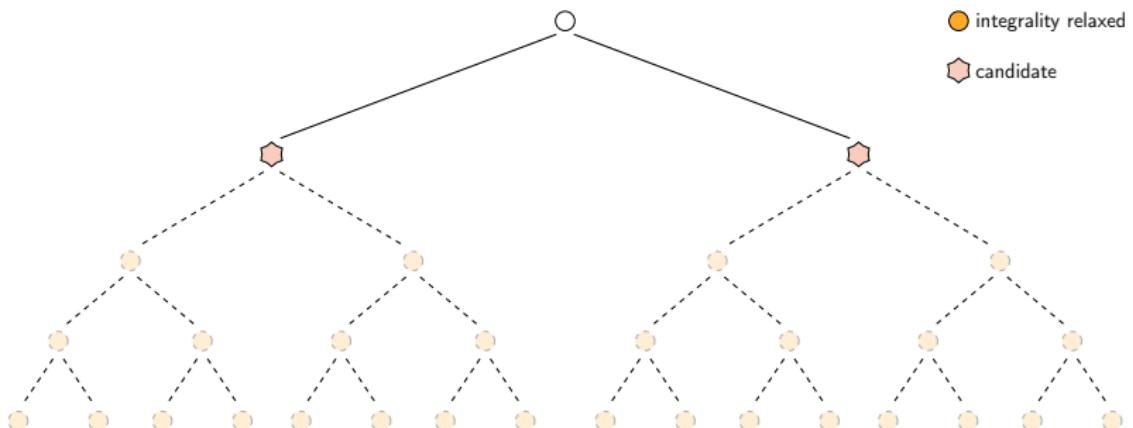
- We simulate with SDDP the optimal solution for all candidates.
- We choose the one furthest from integrality.

HOW TO GROW THE SUB-TREE?

1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality
4. We choose the node improving the most the lower-bound
(Strong-Branching)

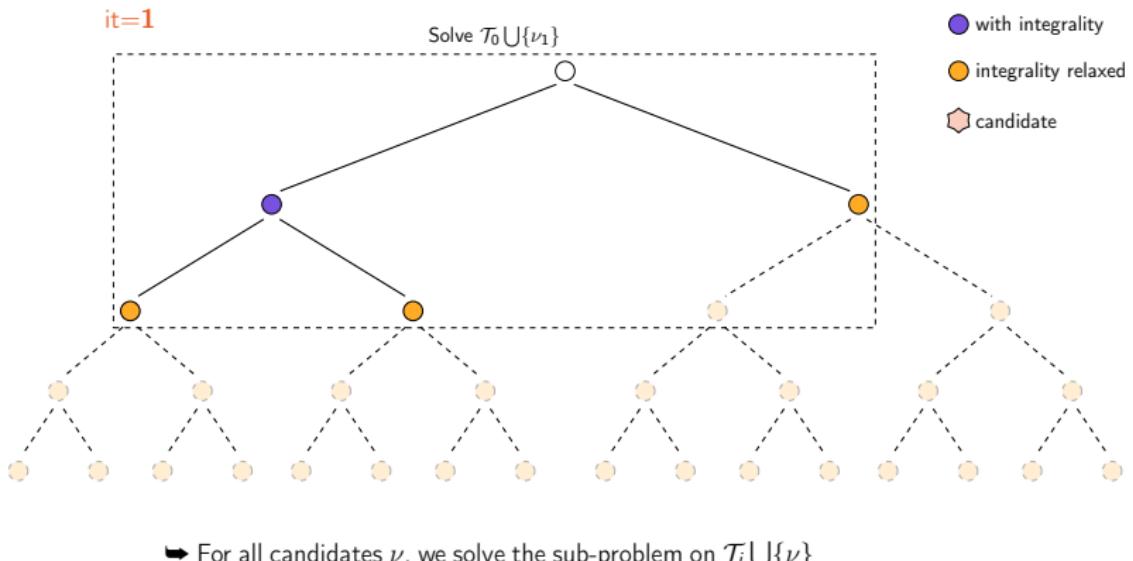
it=1

● with integrality
● integrality relaxed
◆ candidate



HOW TO GROW THE SUB-TREE?

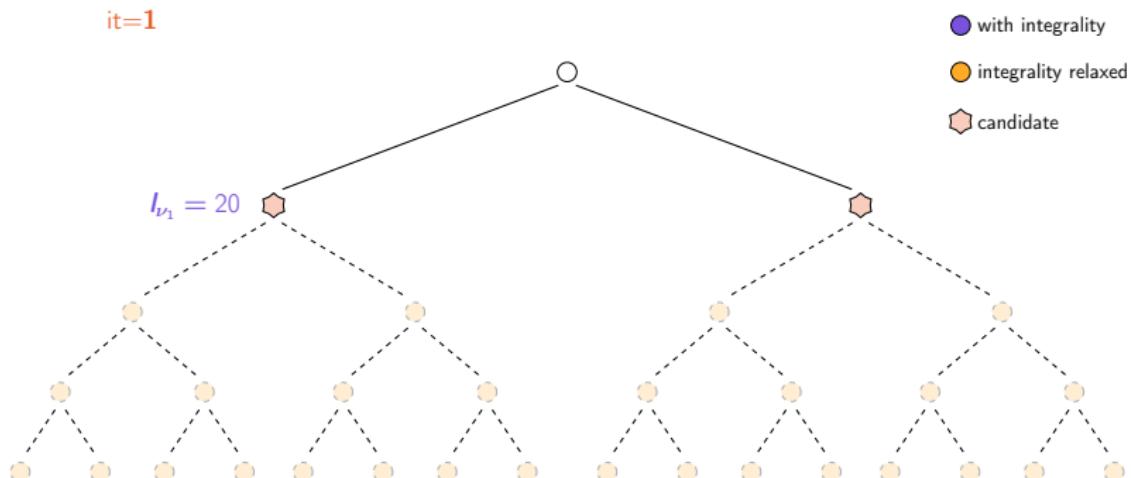
1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality
4. We choose the node improving the most the lower-bound (Strong-Branching)



HOW TO GROW THE SUB-TREE?

1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality
4. We choose the node improving the most the lower-bound
(Strong-Branching)

it=1

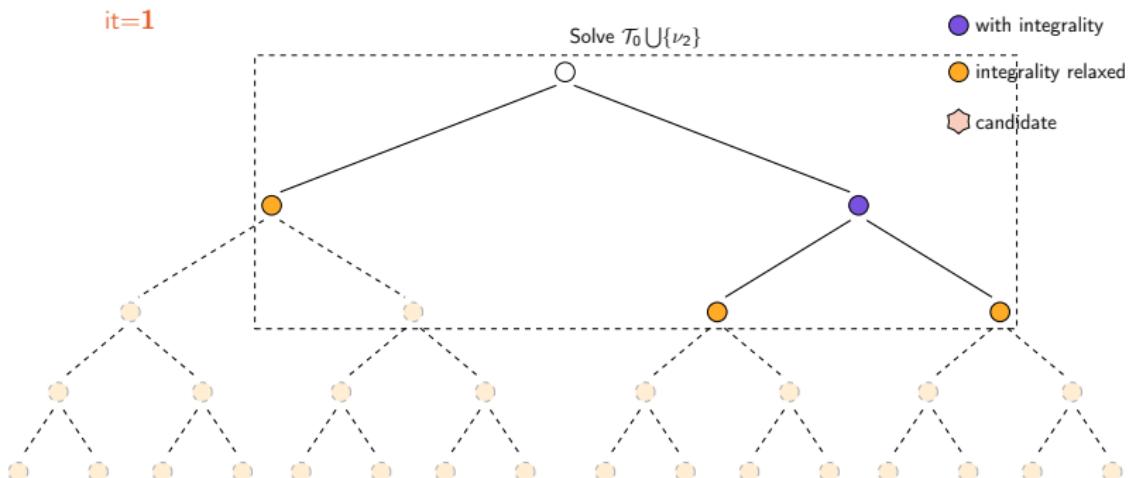


→ For all candidates ν , we solve the sub-problem on $\mathcal{T}_i \cup \{\nu\}$

→ We obtain lower-bound I_ν

HOW TO GROW THE SUB-TREE?

1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality
4. We choose the node improving the most the lower-bound
(Strong-Branching)



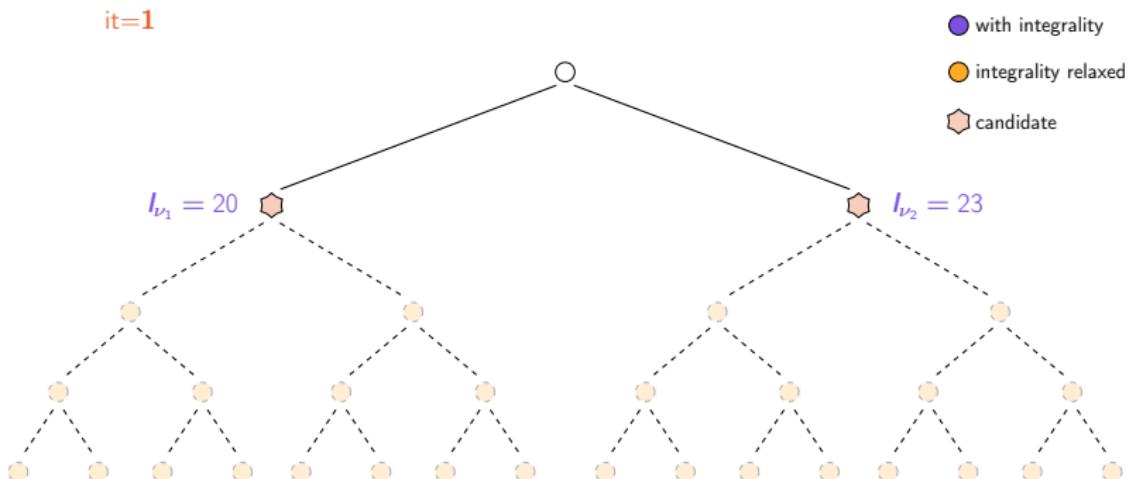
→ For all candidates ν , we solve the sub-problem on $\mathcal{T}_i \cup \{\nu\}$

→ We obtain lower-bound I_ν

HOW TO GROW THE SUB-TREE?

1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality
4. We choose the node improving the most the lower-bound
(Strong-Branching)

it=1

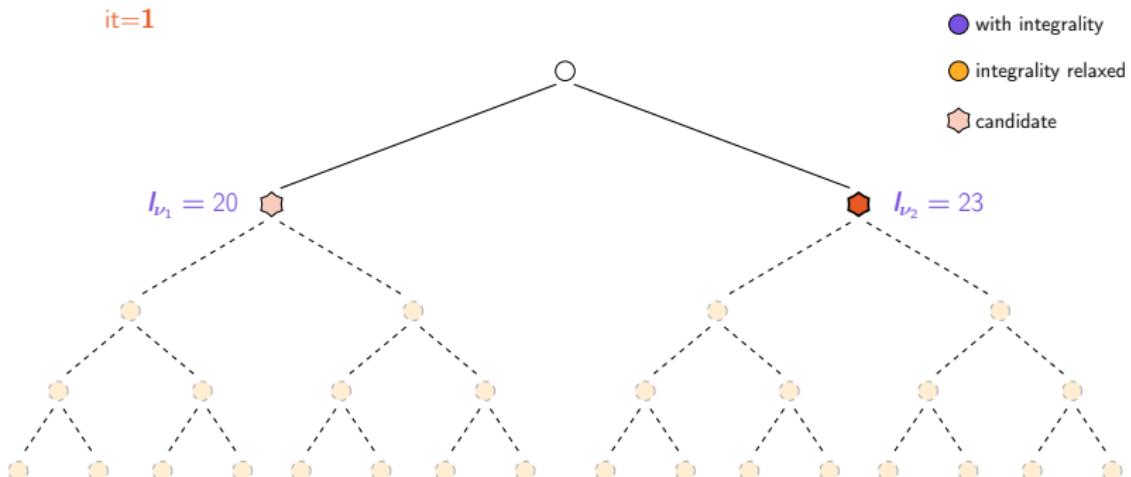


→ For all candidates ν , we solve the sub-problem on $\mathcal{T}_i \cup \{\nu\}$

→ We obtain lower-bound I_ν

HOW TO GROW THE SUB-TREE?

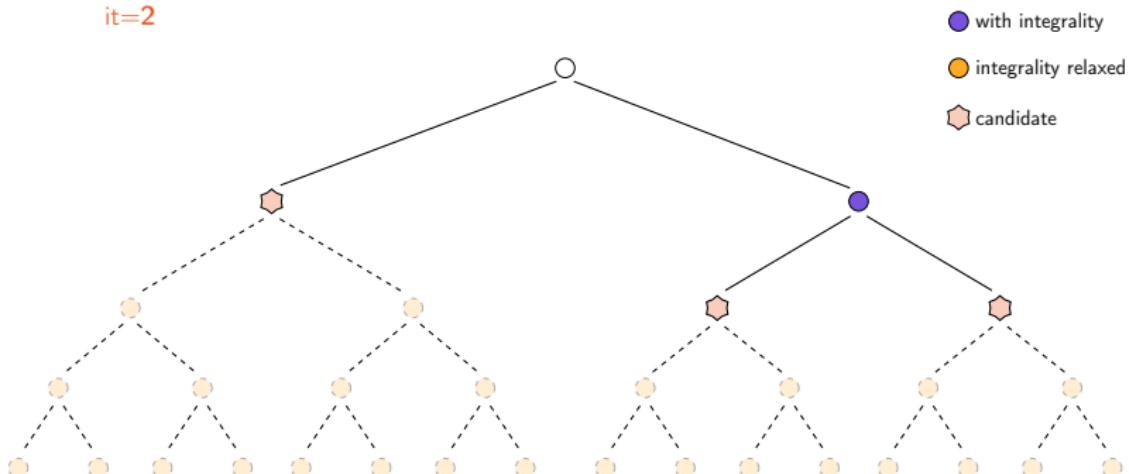
1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality
4. We choose the node improving the most the lower-bound (Strong-Branching)



- For all candidates ν , we solve the sub-problem on $\mathcal{T}_i \cup \{\nu\}$
- We obtain lower-bound I_ν
- We add $\nu^* = \arg \max_\nu \text{candidate}\{I_\nu\}$.

HOW TO GROW THE SUB-TREE?

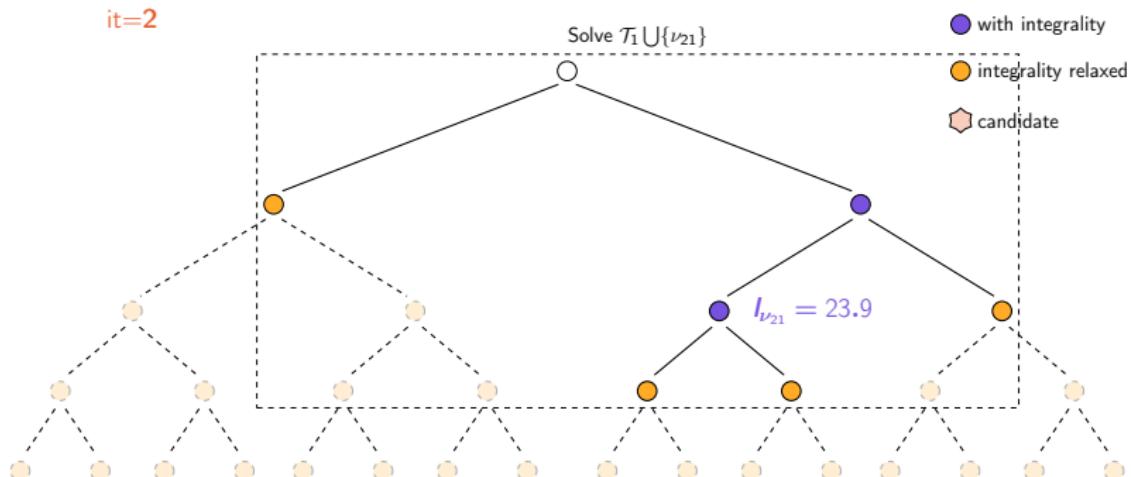
1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality
4. We choose the node improving the most the lower-bound
(Strong-Branching)



- For all candidates ν , we solve the sub-problem on $\mathcal{T}_i \cup \{\nu\}$
- We obtain lower-bound l_ν
- We add $\nu^* = \arg \max_\nu \text{candidate}\{l_\nu\}$.

HOW TO GROW THE SUB-TREE?

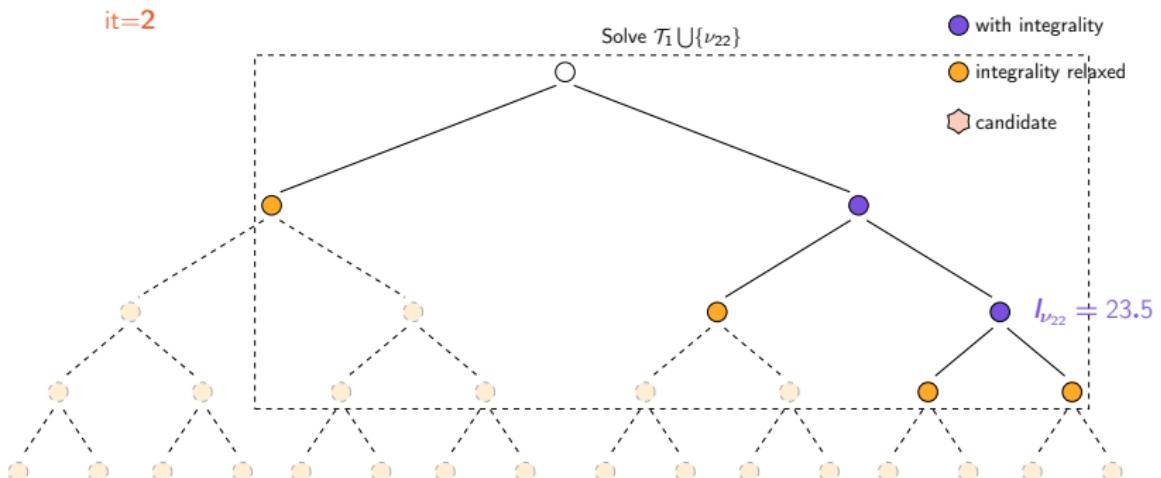
1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality
4. We choose the node improving the most the lower-bound (Strong-Branching)



- For all candidates ν , we solve the sub-problem on $\mathcal{T}_1 \cup \{\nu\}$
- We obtain lower-bound I_ν
- We add $\nu^* = \arg \max_\nu \text{candidate}\{I_\nu\}$.

HOW TO GROW THE SUB-TREE?

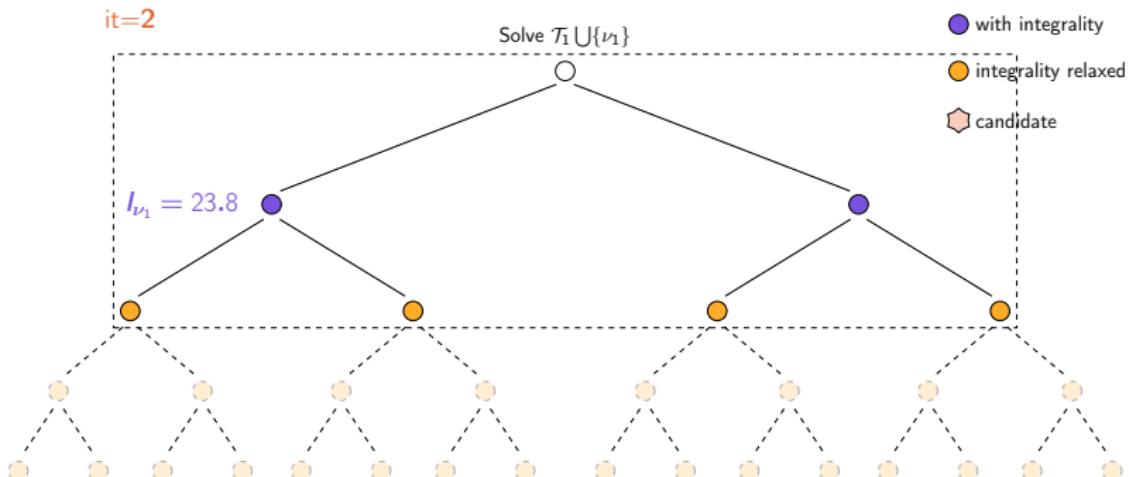
1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality
4. We choose the node improving the most the lower-bound (Strong-Branching)



- For all candidates ν , we solve the sub-problem on $\mathcal{T}_i \cup \{\nu\}$
- We obtain lower-bound I_ν ,
- We add $\nu^* = \arg \max_\nu \text{candidate}\{I_\nu\}$.

HOW TO GROW THE SUB-TREE?

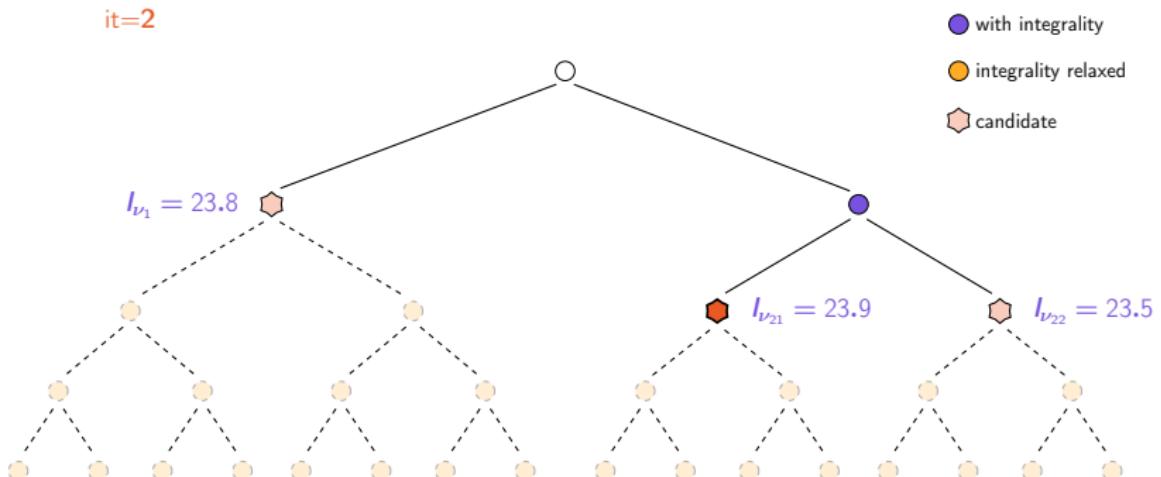
1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality
4. We choose the node improving the most the lower-bound (Strong-Branching)



- For all candidates ν , we solve the sub-problem on $\mathcal{T}_i \cup \{\nu\}$
- We obtain lower-bound I_ν
- We add $\nu^* = \arg \max_\nu \text{candidate}\{I_\nu\}$.

HOW TO GROW THE SUB-TREE?

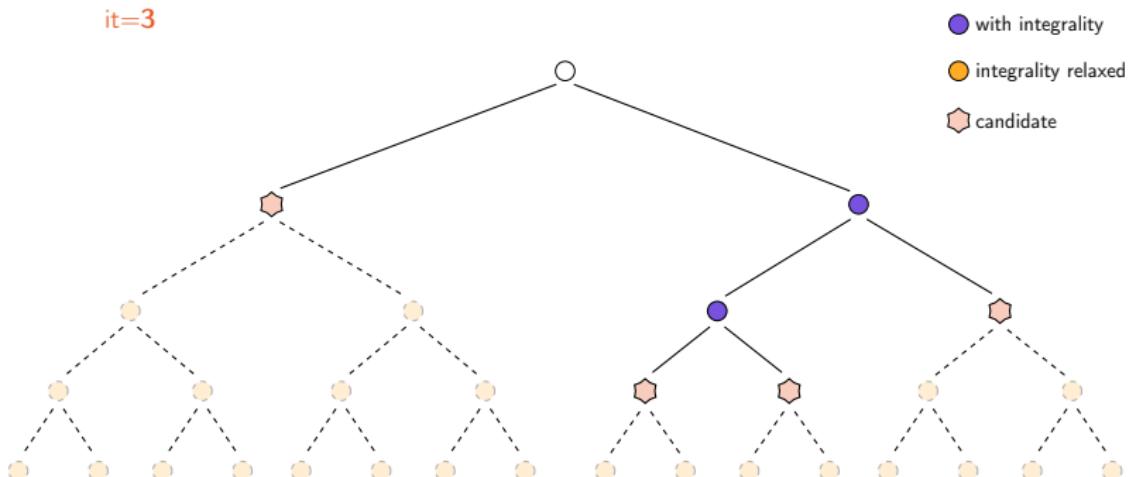
1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality
4. We choose the node improving the most the lower-bound (Strong-Branching)



- For all candidates ν , we solve the sub-problem on $\mathcal{T}_i \cup \{\nu\}$
- We obtain lower-bound I_ν
- We add $\nu^* = \arg \max_\nu \text{candidate}\{I_\nu\}$.

HOW TO GROW THE SUB-TREE?

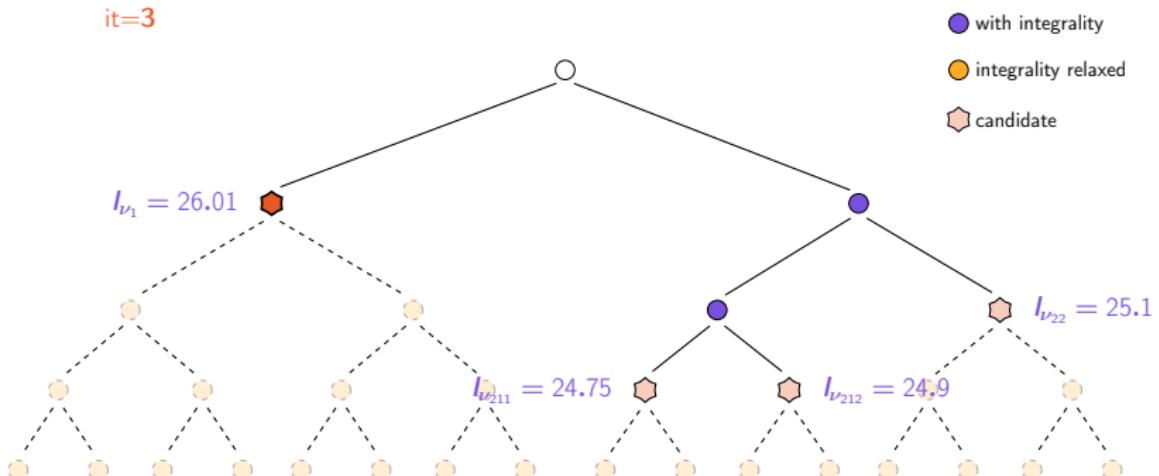
1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality
4. We choose the node improving the most the lower-bound
(Strong-Branching)



- For all candidates ν , we solve the sub-problem on $\mathcal{T}_i \cup \{\nu\}$
- We obtain lower-bound l_ν
- We add $\nu^* = \arg \max_\nu \text{candidate}\{l_\nu\}$.

HOW TO GROW THE SUB-TREE?

1. We add time step per time step
2. We randomly select a sub-tree of a given size N
3. We choose the node furthest from integrality
4. We choose the node improving the most the lower-bound (Strong-Branching)



- For all candidates ν , we solve the sub-problem on $\mathcal{T}_i \cup \{\nu\}$
- We obtain lower-bound I_ν
- We add $\nu^* = \arg \max_\nu \text{candidate}\{I_\nu\}$.

PRESENTATION OUTLINE

State-of-the-art

Lower approximations of MiSLP

Numerical Results

Specific problem

Numerical Experiments

Improving performances

PRESENTATION OUTLINE

State-of-the-art

Lower approximations of MiSLP

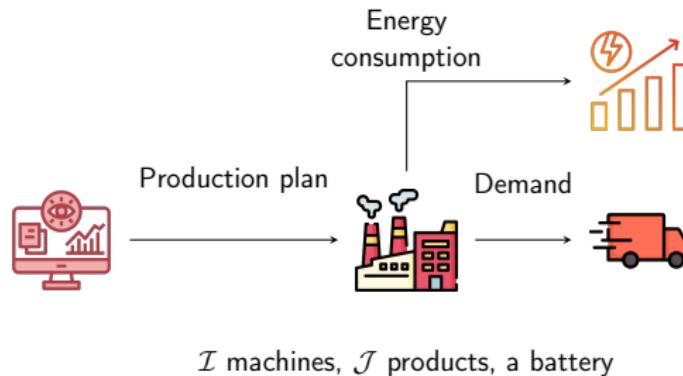
Numerical Results

Specific problem

Numerical Experiments

Improving performances

APPLICATION MODEL



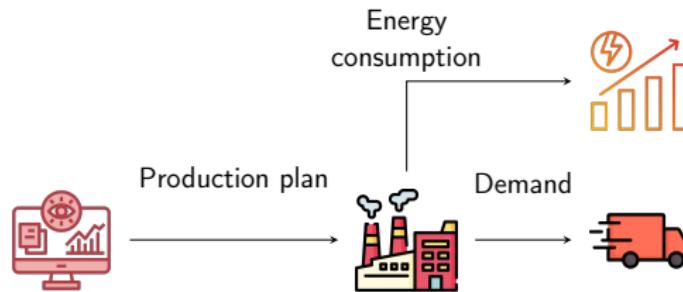
State variable

- s_t^j : stock of j at t
- soc_t : energy in the battery at t

Controls

- $b_t^j = \begin{cases} 1 & \text{if we produce } j \text{ at } t \text{ on } i, \\ 0 & \text{otherwise.} \end{cases}$
- u_t^{ij} : production of j on i at t
- q_t^{grid} : energy bought at t
- ϕ_t^+ and ϕ_t^- : energy charged/discharged at t

APPLICATION MODEL



\mathcal{I} machines, \mathcal{J} products, a battery
Process and Physical constraints

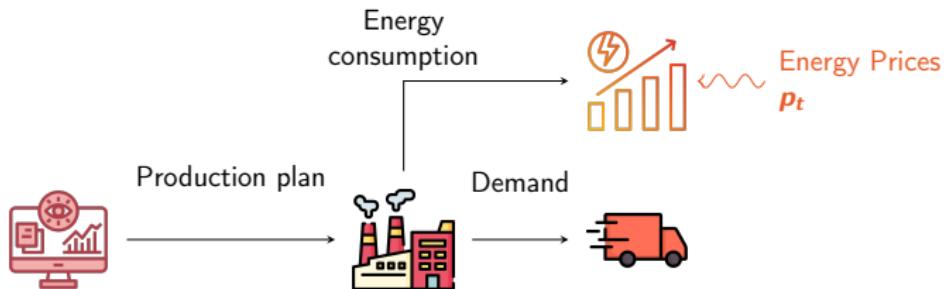
Dynamics

$$1. \quad s_t^j = s_{t-1}^j - d_t^j + \sum_i u_t^{ij}$$
$$2. \quad soc_t = soc_{t-1} - \frac{1}{\eta} \phi_t^- + \eta \phi_t^+$$

Production Constraints

1. $\underline{u}^i b_t^{ij} \leq u_t^{ij} \leq \overline{u}^i b_t^{ij}$
2. $\sum_{j \in \mathcal{J}} b_t^{ij} \leq 1$
3. $\phi_t^- - \phi_t^+ + q_t^{\text{grid}} \geq \sum_{i,j} f^{ij}(u_t^{ij})$
4. $\max_i b_t^{ij} + \max_i b_t^{ik} \leq 1 \text{ if } j, k \in \mathcal{E}$

APPLICATION MODEL



\mathcal{I} machines, \mathcal{J} products, a battery

Objective

$$\mathbb{E} \left[\sum_{t=1}^T \mathbf{p}_t q_t^{\text{grid}} \right]$$

PRESENTATION OUTLINE

State-of-the-art

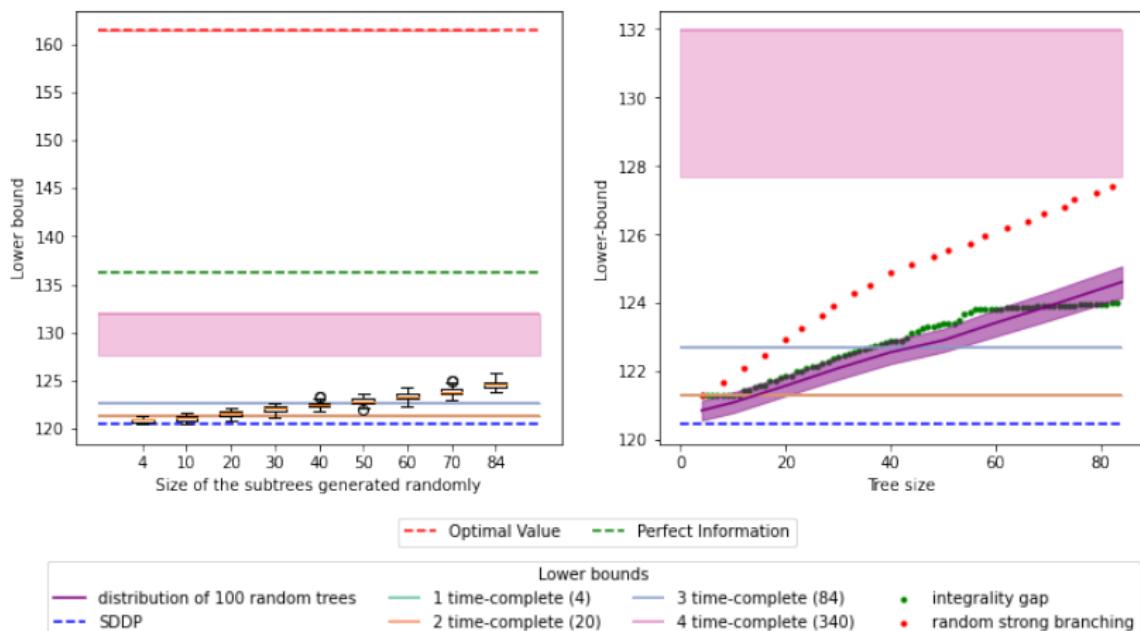
Lower approximations of MiSLP

Numerical Results

Specific problem

Numerical Experiments

Improving performances



- The **strong-branching generation improves the most the lower-bound**.
- Integrality-gap does better than random generation until a certain point, and then stagnates.
- All lower-bounds are far from the optimal value (at best -19%).**

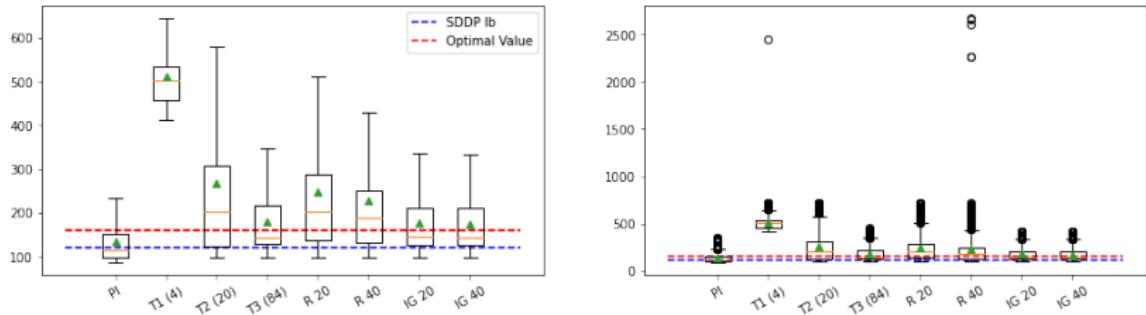


Figure: Simulations with different methods over all scenarios

- Unfeasibility is **highly penalized**
- Simulation results are **encouraging**.
- The **gap subtrees yield the best results**.
- Bear in mind, these are **no general conclusions**.

PRESENTATION OUTLINE

State-of-the-art

Lower approximations of MiSLP

Numerical Results

Improving performances

IMPROVING PERFORMANCES

We have constructed a sub-tree \mathcal{T}_i .

How can we improve the solution of the partially relaxed problem $(P_{x_0}^{\mathcal{T}_i})$?

1. Improve the solution of the MILP
 - ➡ add specific lot-sizing cuts
2. Improve the cost-to-go approximation used at the leaves of the sub-tree
 - ➡ use some of SDDiP cuts (strengthened Benders' cuts, lagrangian cuts)
3. Add some nodes with continuously relaxed variables but valid cuts

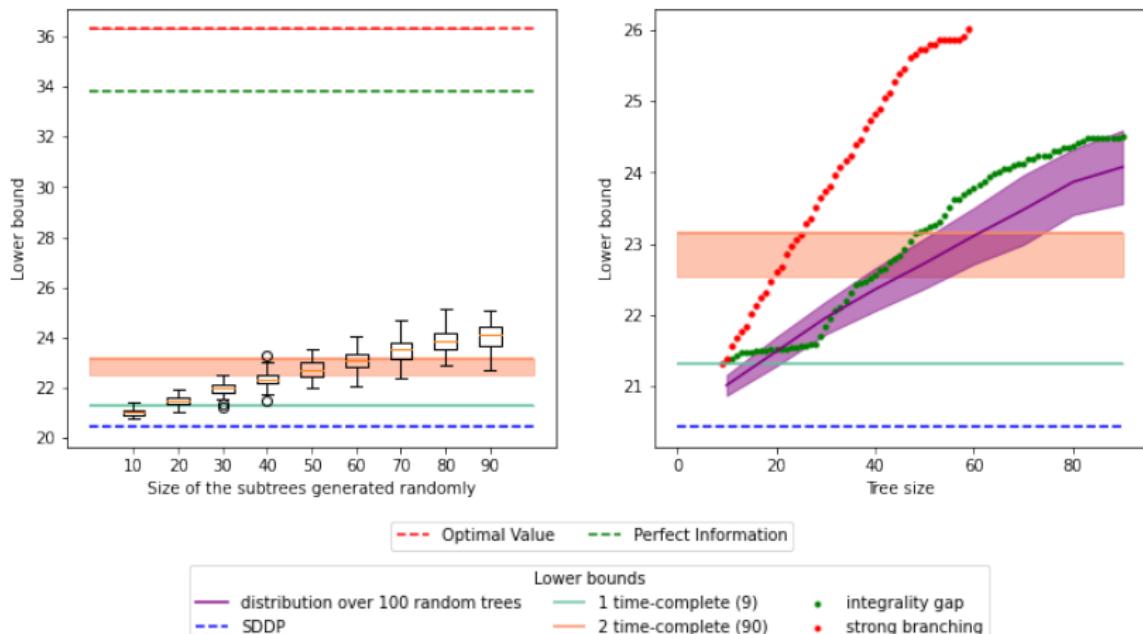
IN A NUTSHELL

- Depending on the method used to generate a sub-tree, we **can improve the lower-bounds obtained and the policies.**
- Preliminary results are **encouraging** to get good policies for MiSLP.
- Maybe **exploiting the structure of the problem** could lead us to specific generation methods that would perform better.

Thank you for your attention,
any questions?

Zoé Fornier, zoe.fornier@enpc.fr

$$T = 3, Q = 9, I = 3, J = 4$$



$$T = 3, Q = 9, I = 3, J = 4$$

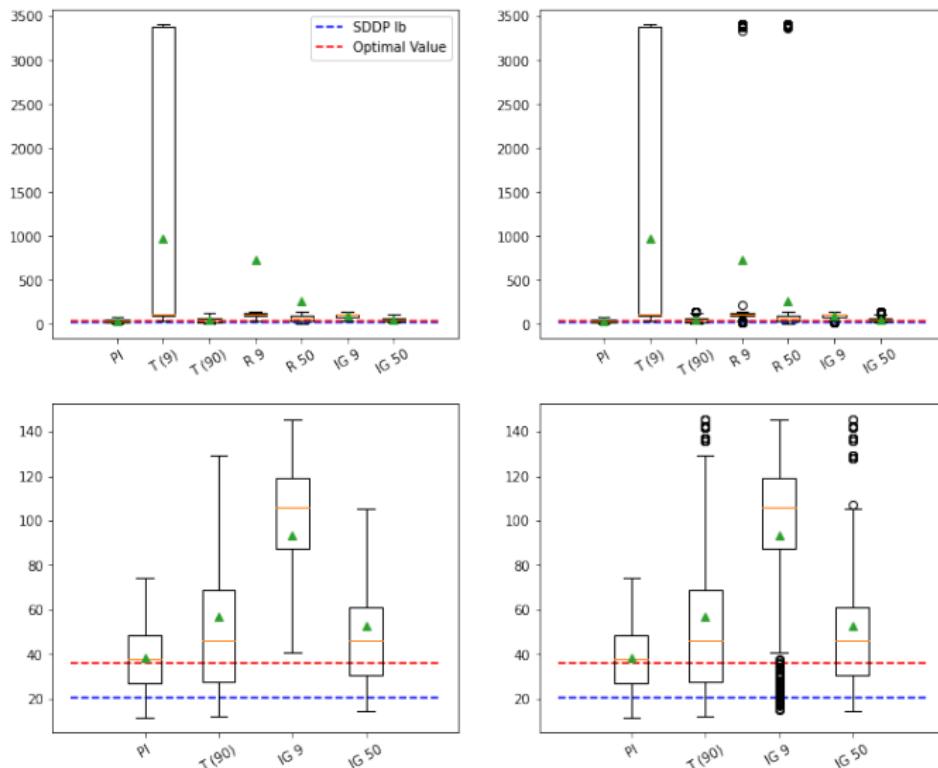
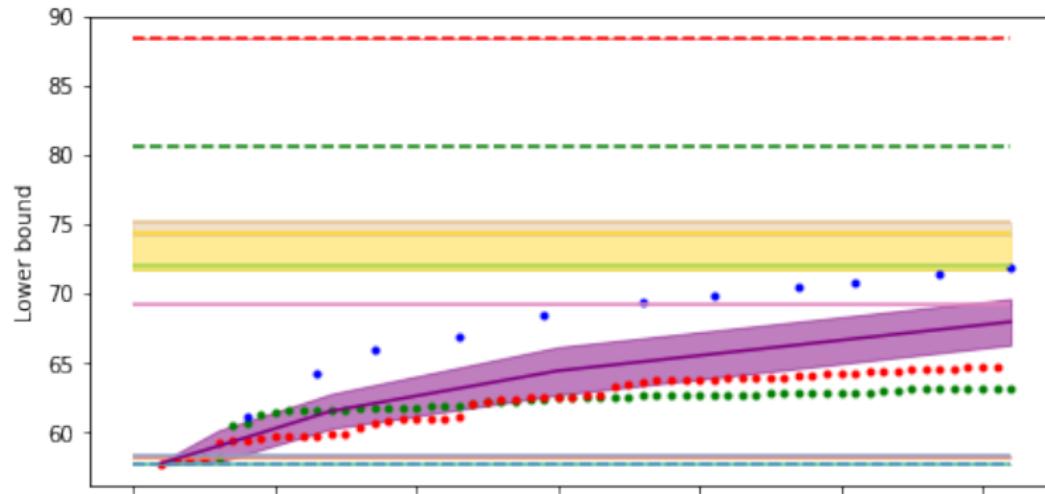


Figure: Simulations with different methods over 339 scenarios

$$T = 8, Q = 2, I = 3, J = 4$$



$$T = 8, Q = 2, I = 3, J = 4$$

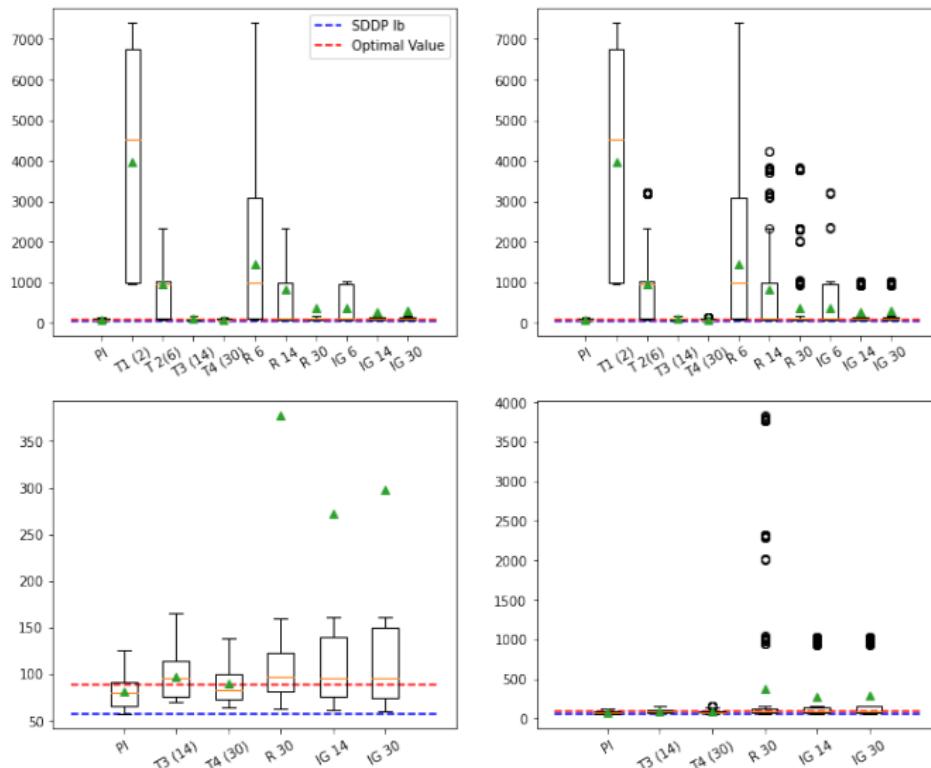


Figure: Simulations with different methods over all scenarios