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MOTIVATION

Z machines, J products
Process and Physical constraints

Example

Optimize the production plan of a factory with uncertain demand
and energy prices.

2/21



MOTIVATION

Production plan

s
<
<y

&
)
I

Energy

consumption @/’H

Example
Optimize the production plan of a factory with uncertain demand
and energy prices.

when/how much to produce
= Costs: energy purchases
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MOTIVATION
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Example
Optimize the production plan of a factory with uncertain demand
and energy prices.

= Randomness: uncertain energy prices
= Scale: T =24, |Z| =2, |J|=3
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SOLVING MiSLP

Multistage integer Stochastic Linear Problems

(P) min

x,u,b

Xet1 = Fer1(Xe, e, be, &) Vit

e State variables: xp4q follows the dynamic Fpiq
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SOLVING MiSLP

Multistage integer Stochastic Linear Problems

® o
Xer1 = Fep1(Xe, ug, by, &) vt
u; & Z/{(Xt. gt) C Rnu Vt
bt S B(Xt.gt) C {O, 1}!‘1[, YVt

e Continuous Control uy continuous

e Integer Control by binary
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SOLVING MiSLP

Multistage integer Stochastic Linear Problems

"o
Xe41 = Fera(xe, ue, by, &) vt
u; € U(xt, Et) C R™ Vit
b, € B(x¢,&:) € {0,1}™ vt
o(ue, be) Co(y,.. ., &t) vt

¢ Randomness (&:)q[7] is a sequence of finitely supported
random variables

e Non-anticipativity constraints: we cannot know what will
happen in the future
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SOLVING MiSLP

Multistage integer Stochastic Linear Problems

T
(P) min E lZLt(th.ut.bt.Et)‘|
t=1

x,u,b
Xe41 = Fei1(xe, ue, by, &) vt
u € U(xe, &) CR™ Vit
b € B(x;, &) € {0,1}™ vt
o(ug, be) C o(&1,..., &) vt

® Objective Minimize expected costs

® Instantaneous cost: L;
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SOME NOTATIONS

Scenario Tree T

\O /\
- /\ /\

/\ /\ /\ /\ /\ /\ /\ /\

A scenario (&) is a is the set of nodes in 7 of
realization of (&:):e[my- depth t.

The is the A node v = (&1,&, ..., &) reads
collection of all scenarios. all its ancestors.
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REFORMULATION

We can always reformulate (P) as a large deterministic MILP:

MiSLP: extensive formulation

;
(Pext) min > > w Le(x,u,b,E)

L ey v
Xy = F,(Xa(ys Us(w)s Da()» Eafwr)) v
u, €eUx,€) v
b, € B(x,,£) c{0,1}™ v
all variables are declined on each node
= the dynamics depend on the parent a(v) of
w [ntractable: if & is discretized with 10 values, =10%
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PRESENTATION OUTLINE

State-of-the-art
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PRESENTATION OUTLINE

State-of-the-art

Dynamic Programming Principles
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DYNAMIC PROGRAMMING PRINCIPLES

V,(x) := optimal cost from node v and state x.
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V,(x) := optimal cost from node v and state x.

Dynamic Programming: cost-to-go functions
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DYNAMIC PROGRAMMING PRINCIPLES

V,(x) := optimal cost from node v and state x.

Dynamic Programming: cost-to-go functions

= with stagewise independence hypothesis, V,,(x) = V.(x)
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PRESENTATION OUTLINE

State-of-the-art

Current Numerical Algorithms
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CURRENT NUMERICAL ALGORITHMS

e Stochastic Dynamic Programming (SDP)

Principle: we solve the problem with dynamic equations, by discretizing
continuous state variables.

Pros: few assumptions, easily implemented.

Cons: curse of dimensionality.
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CURRENT NUMERICAL ALGORITHMS

Stochastic Dynamic Programming (SDP)

Principle: we solve the problem with dynamic equations, by discretizing
continuous state variables.

Pros: few assumptions, easily implemented.

Cons: curse of dimensionality.

Principle: solves continuous multistage linear stochastic problems by
constructing Benders-like cuts.

Pros: fast in practice, and theoretical guarantee.

Cons: cannot handle integer variables.

Stochastic Dual Dynamic integer programming (SDDiP)

Principle: algorithm built on SDDP to solve multistage linear stochastic
problems with only binary state variables.

Pros: theoretical guarantees.

Cons: slow iterations and convergence.
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PRESENTATION OUTLINE

State-of-the-art

Stochastic Dual Dynamic Programming (SDDP)
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SDDP: FOCUS

Dynamic Programming: cost-to-go functions

Vi(x,€) = min  Le(x,u, )+ 0
y,u
y = FT(X7 u, 5)
ueU(y,f)
0> fisrk + 8l u(y — Xes1.) Yk

Assumptions
® stage-wise independence of noises
® Continuous variables, V; is a convex function of x

=V, can be approximated as a maximum of linear cuts

(2a)
(2b)
(2¢)
(2d)
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SDDP: ALGORITHM

We dispose of
current approximation
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SDDP: ALGORITHM

Forward pass

(gf)te[T]

We randomly draw
a scenario
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SDDP: ALGORITHM

Forward pass

(ff)te[T]

(XL{()tE[T]

compute current optimal trajectory
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SDDP: ALGORITHM

Forward pass

ft,k + gtTk(.

k
— X;

)

(ff)te[T]

Compute new cuts to ap-
proximate of {V;}¢c[7]

Backward pass

(XL{()tE[T]
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SDDP: ALGORITHM

Forward pass

(gé{)te[T]

obtain VX

(XL{()tE[T]

feoe + gt7,—k(' —x{)

Backward pass
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PRESENTATION OUTLINE

Lower approximations of MiSLP
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PRESENTATION OUTLINE

Lower approximations of MiSLP

Intuition: relax partially integrality
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INTUITION

The full problem in its extensive formulation is

[0} @ with integrality

o/ \O.i"‘egra'iry relaved
>
N T
/

/NN N N N N N N

A A AN A AN A A A A A AN A AR AN AT
©0 0000 0000 0000 00 00 0000 0000 0000 00
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INTUITION

relax partially integrality.

[0} @ with integrality

) / \o ) / \.
./ \. O/ \. ./ \O (@) \.
AAAANA ANAAA
i

A A AN A AN A AN A AN A AN AN AR /\
0@ €000 0000 €00® 00 00 ©@00 0000 00 00

©

w This problem is to solve, but still intractable.
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INTUITION

Depending on how we relax intregrality, we can use

O/O\O
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o
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@ with integrality
Q@ integrality relaxed
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INTUITION

Depending on how we relax intregrality, we can use

(0] @ with integrality

./ \. ./ \
/R_“])/ \. ./ \. ./ \R%\ |
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PRESENTATION OUTLINE

Lower approximations of MiSLP

How to construct a partially relaxed sub-tree?
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HOW TO GROW THE SUB-TREE?

@ with integrality

O Q© integrality relaxed

| W»ﬁhich’ sub—tree should we c»hooée to solve? |

o o O O

13/21



HOW TO GROW THE SUB-TREE?

1. We add time step per time step

=1 @ with integrality
) )
© © o °

Q@ integrality relaxed
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HOW TO GROW THE SUB-TREE?

1. We add time step per time step

T=2 @ with integrality
/ o\
/ .\ / .\
@ @ @ @
o o o o o o o o

O O ] OO O ] ] ] ] ] OO ] ]

Q@ integrality relaxed
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HOW TO GROW THE SUB-TREE?

1. We add time step per time step

T=3 @ with integrality

/\' /\
N /\ \
4&:&(&4&%% H(Xﬂrz(xvz(kr.ﬂ;
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HOW TO GROW THE SUB-TREE?

1.
2. We randomly select a sub-tree of a given size N

@ with integrality

O Q© integrality relaxed
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HOW TO GROW THE SUB-TREE?
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2. We randomly select a sub-tree of a given size N

N =2 @ with integrality
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Q© integrality relaxed
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HOW TO GROW THE SUB-TREE?

1.
2. We randomly select a sub-tree of a given size N

/\
/\ N

Q© integrality relaxed
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HOW TO GROW THE SUB-TREE?

1.
2. We randomly select a sub-tree of a given size N

N =14 @ with integrality

o/ \. /V_Oz(\o ::i/ /\ /J\/Xﬁ
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HOW TO GROW THE SUB-TREE?

1.
2.

3. We choose the node furthest from integrality

it=1 @ with integrality

Q© integrality relaxed

O
/ \ J candidate

S °
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HOW TO GROW THE SUB-TREE?

1.
2.

3. We choose the node furthest from integrality

it=1 @ with integrality
bg] =03 —Q— bﬁz =09 Q© integrality relaxed
/ x J candidate

= \We simulate with SDDP the optimal solution for all candidates.
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HOW TO GROW THE SUB-TREE?

1.
2.

3.

it=1 @ with integrality
B, =03 ——Q—_ b,=09 Q© integrality relaxed
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/ \ {J candidate
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HOW TO GROW THE SUB-TREE?

it=2 @ with integrality

=09 Q© integrality relaxed

/ \

= \We simulate with SDDP the optimal solution for all candidates.
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HOW TO GROW THE SUB-TREE?

1.
2.
it=2 @ with integrality
=09 Q© integrality relaxed
/ \ Ocaﬂdldate
b =005 _— =0.38

/\

= \We simulate with SDDP the optimal solution for all candidates.
w \We choose the one furthest from integrality.
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HOW TO GROW THE SUB-TREE?

1.
2.
it=2 @ with integrality
O——— B, =09 Q© integrality relaxed
~
\ [j candidate
0, =005 — @— K0 =038 Qa
} / |

= \We simulate with SDDP the optimal solution for all candidates.
w \We choose the one furthest from integrality.
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HOW TO GROW THE SUB-TREE?

it=3 @ with integrality

=09 Q© integrality relaxed

/ \ J candidate
bY, = 005// \ 4

/\

= \We simulate with SDDP the optimal solution for all candidates.
w \We choose the one furthest from integrality.
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HOW TO GROW THE SUB-TREE?

it=3 @ with integrality

=09 Q© integrality relaxed

/ \ J candidate
bY, = 005// \ 4

—001///.\\ , =097
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= \We simulate with SDDP the optimal solution for all candidates.
w \We choose the one furthest from integrality.
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HOW TO GROW THE SUB-TREE?

it=3 @ with integrality

=09 Q© integrality relaxed
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= \We simulate with SDDP the optimal solution for all candidates.
w \We choose the one furthest from integrality.
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HOW TO GROW THE SUB-TREE?

@ with integrality

Q@ integrality relaxed

N \O

/\

= \We simulate with SDDP the optimal solution for all candidates.
= \We choose the one furthest from integrality.
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HOW TO GROW THE SUB-TREE?

1.
2.
3.
4. We choose the node improving the most the lower-bound
(Strong-Branching)

it=1 @ with integrality

Q© integrality relaxed

O
/ \ ( candidate
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HOW TO GROW THE SUB-TREE?

P e

ol Solve To U{Vl} @ with integrality

Q© integrality relaxed

N

= For all candidates v/, we solve the sub-problem on 7; [ J{v}
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it=1 @ with integrality
O Q© integrality relaxed
/ \ O candidate
=20 @ o)
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HOW TO GROW THE SUB-TREE?

B owhe

it=1 Solve To {2} @ with integrality

(@) |ntegra||ty relaxed

- \

= For all candidates v/, we solve the sub-problem on 7; [ J{v}

w \\e obtain lower-bound /,
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HOW TO GROW THE SUB-TREE?

P e

it=1 @ with integrality

Q© integrality relaxed

O
/ \ ( candidate

L, =20 @ @ =2

= For all candidates v/, we solve the sub-problem on 7; [ J{v}
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HOW TO GROW THE SUB-TREE?

P e

it=2 @ with integrality

Q© integrality relaxed

/ \
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HOW TO GROW THE SUB-TREE?

B owhe

it=2 Solve 71 U{var} @ with integrality

O Q© integrality relaxed
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= For all candidates v/, we solve the sub-problem on 7; [ J{v}
w \\e obtain lower-bound /,
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HOW TO GROW THE SUB-TREE?

B owhe

it=2 Solve 71 U{vza) @ with integrality

Q© integrality relaxed

/ \

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

I, = 23.5

= For all candidates v/, we solve the sub-problem on 7; [ J{v}
w \\e obtain lower-bound /,
= We add v* = arg max, candidate{ l, }
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HOW TO GROW THE SUB-TREE?

B owhe

it=2 Solve T U{Vl} @ with integrality

@) |ntegra||ty relaxed

/ \ Ocandldate
b . / \

= For all candidates v/, we solve the sub-problem on 7; [ J{v}
w \\e obtain lower-bound /,

= \We add v* = arg max, candidate{ b }-
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HOW TO GROW THE SUB-TREE?

P e

it=2 @ with integrality
O Q© integrality relaxed
/ \ O candidate
I, =238 ¢ ®
@ I, =239 Q ,, =235

w For all candidates v/, we solve the sub-problem on 7; [ J{v}
w \\e obtain lower-bound /,
= We add v* = arg max, candidate{ l, }
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HOW TO GROW THE SUB-TREE?

B owhe

it=3 @ with integrality

Q© integrality relaxed

/ \

/\

w For all candidates v/, we solve the sub-problem on 7; [ J{v}
w \\e obtain lower-bound /,

= \We add v* = arg max, candidate{ b }-
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HOW TO GROW THE SUB-TREE?

P e

it=3 @ with integrality

O Q© integrality relaxed

/ \ O candidate
) o 1, =251

Iy, =24.75 @ Q b, =249

= For all candidates v/, we solve the sub-problem on 7; [ J{v}
w \\e obtain lower-bound /,
= We add v* = arg max, candidate{ l, }
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PRESENTATION OUTLINE

Numerical Results

14/21



PRESENTATION OUTLINE

Numerical Results

Specific problem
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APPLICATION MODEL

Energy

consumption @/’

Production plan Demand

Bk —— figg — W

Z machines, J products, a battery

i 1 if we produce j at t on i,
by = .
0 otherwise.

s{: stock of j at t i ) ) )
ui: production of jonjatt

soc;: energy in the

grid |
battery at ¢t Gt

. energy bought at t

¢¢ and ¢; : energy charged/discharged at t
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APPLICATION MODEL

Energy

consumption @
il

Z machines, J products, a battery
Process and Physical constraints

Production plan Demand

@ N1
B 4 Bred
!g L

Dynamics Production Constraints

1w bl < uf < uibl

2 Yesbl<1

3¢ —of +af > 2, ()

4. max; bg+ max; bk < 1if j ke &

1. 5{:5{—1_‘3’{‘*‘2;“?

0. s0C; = SOCr_1 — %qﬁ; +noy
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APPLICATION MODEL

Energy

consumption @/’
H AN

1l

Production plan Demand

f

= e [gE

Z machines, J products, a battery

Objective

T
E |: Z P q%nd :|
t=1

Energy Prices
Pt
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PRESENTATION OUTLINE

Numerical Results

Numerical Experiments
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Lower bound
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Lower-bound

4 W 1 3 4 50 & 70 B4

Size of the subtrees generated randomly Tee size
===~ Optimal Value ==~ Perfect Information
Lower bounds
—— distribution of 100 random trees 1 time-complete (4) 3 time-complete (84} « integrality gap
=== SDDP 2 time-complete (20} 4 time-complete (340} « random strong branching

® The strong-branching generation improves the most the lower-bound.

® Integrality-gap does better than random generation until a certain point,

and then stagnates.

(at best -19%).
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Figure: Simulations with different methods over all scenarios

Unfeasiblity is highly penalized

Simulation results are encouraging.

The

Bear in mind, these are no general conclusions.
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PRESENTATION OUTLINE

Improving performances
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IMPROVING PERFORMANCES

We have constructed a sub-tree 7;.

Improve the solution of the MILP
add specific lot-sizing cuts

Improve the cost-to-go approximation used at the leaves of the
sub-tree

use some of SDDIP cuts (strengthened Benders' cuts,
lagrangian cuts)

Add some nodes with continuously relaxed variables but valid
cuts
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IN A NUTSHELL

Depending on the method used to generate a sub-tree, we

Preliminary results are encouraging to get good policies for
MiSLP.

Maybe exploiting the structure of the problem could lead
us to specific generation methods that would perform better.
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Thank you for your attention,
any questions?

dMETRON CERMIES

Ecole des Ponts
ParisTech

Zoé Fornier, zoe.fornier@enpc.fr
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Lower bound
R B

1

Lower bound

W W D 4 s e T &8 %0 1) 0 0 & 0
Size of the subtrees generated randomly Tee size

=== Optimal Yalue === Perfect Infermation

Lower bounds
—— distribution over 100 random trees  —— 1 time-complete (9) = integrality gap
=== SDDP 2 time-complete (30} « strong branching
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Figure: Simulations with different methods over 339 scenarios



Lower bound
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-=-- SDDP —— J-complete (14) mm distribution over 100 random trees
=== QOptimal ¥alue 4.complete (30) « integrality gap
=== Perfect Information S-complete (62) + strong branching
—— l-complete (2) B-complete {126) « random strong branching

2-complete (B) T-complete {254}



--- SDDP b
oo -=- Optimal Value 000
6000 6000
5000 5000
o
4000 4000 FE
3000 3000 o [:] o
o o
2000 2000 o
1000 EI 1000 L ﬂ 0o
0 =i T N, o e A lal 4 &
R SPRUMC A FRLI Y D@ 4B e a3 2006 b a0
P o B8 ol oe® P ¥ P B 08 oe® QP BB
4000
B ®
350 3500
300 . 3000
* 2500
250
2000 o
200
1500
150
1000 " ]
100
...-%. e - - — 500 R
A A
© - o] mem e e e
»

Figure: Simulations with different methods over all scenarios

<

o » o
® ﬁ\\m .‘hﬁm LA




	Introduction
	State-of-the-art
	Dynamic Programming Principles
	Current Numerical Algorithms
	Stochastic Dual Dynamic Programming (SDDP)

	Lower approximations of MiSLP
	Intuition: relax partially integrality
	How to construct a partially relaxed sub-tree?

	Numerical Results
	Specific problem
	Numerical Experiments

	Conclusion
	Improving performances
	Annexe

