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Résumé

Dans cette thèse, nous nous intéressons à l’intégration d’aspects énergétiques dans les problèmes
de planification de la production. D’une part, nous traitons la modélisation de systèmes complexes
sous incertitude et développons des méthodes de résolution adaptées. D’autre part, nous explorons
des approches pour traduire le concept d’équité mathématiquement.

Dans la première partie, nous proposons un modèle qui vise à optimiser conjointement la
planification de la production d’une usine et la gestion de son approvisionnement en énergie,
en présence de sources d’énergie renouvelables et de batteries. Le problème est formulé comme
un Problème Stochastic Multiétapes Linéaire en variables continues et Binaires (PSMLB). Sa
résolution est numériquement difficile en raison de sa taille, de la présence incertitudes et des
contraintes d’intégrité. Nous explorons diverses stratégies de résolution (MPC, SDP) puis
développons une heuristique qui utilise l’algorithme SDDP.

En deuxième partie, nous élaborons une nouvelle méthodologie pour résoudre des PSMLB.
Cette méthodologie s’inscrit dans un cadre abstrait, qui repose sur la structure des arbres de
scénarios, et dont le but est de coordonner SDDP et le Branch-and-Bound (BB). Cela conduit à
un algorithme efficace et exact pour résoudre les PSMLB. Plus précisément, l’algorithme résout
itérativement des relaxations partielles du problème qui reposent sur la structure de sous-arbres,
où l’intégrité est maintenue, les portions élaguées étant approximées à l’aide de SDDP. Cela
permet de trouver un compromis entre qualité de la solution et temps de calcul. Enfin, nous
proposons des heuristiques inspirées des techniques BB pour faire grandir le sous-arbre.

Enfin, la troisième partie se concentre sur l’équité dans un contexte d’agrégation des prosumers
(ou grands consommateurs) sur les marchés de l’électricité. Nous examinons différentes manières
de trouver une allocation des bénéfices équitables et qui garantissent que chaque participant
bénéficie de l’agrégation. Nous concevons des modèles stochastiques multi-périodes intégrant
l’équité par construction grâce à des contraintes d’acceptabilité et des opérateurs d’équité. Notre
approche met l’accent sur une prise de décision équitable dans des environnements dynamiques
et incertains.
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Abstract

In this thesis, we investigate the impact of integrating energy considerations into production
planning problems. On one side, we focus on modeling complex systems under uncertainty. On
the other side, we explore approaches to translate the concept of fairness in mathematical models.

The first part focuses on jointly optimizing production planning and energy supply management
in an industrial setting with renewable energy and storage systems. Formulated as a multistage
stochastic problem with continuous and binary variables, it presents challenges due to its size,
uncertainties, and integer constraints. We explore various solution strategies comparing their
performance across different setups.

The second part introduces a new methodology to solve Multistage Stochastic mixed-binary
Linear Program (MSbLP), with stagewise independent noises. First, we develop an abstract
framework, relying on the scenario tree structure, that aims to coordinate SDDP– that solves the
continuous relaxation efficiently– and Branch-and-Bound (BB) procedures– that deal with binary
variables. This leads to an exact algorithm to solve MSbLP, relying on partial relaxations of the
problem. The algorithm consists of iteratively growing a small subtree on which the integrality
constraints are maintained. The rest of the problem, continuously relaxed, is represented through
value functions obtained via SDDP. This allows to balance between solution accuracy and
computational feasibility. We discuss heuristics inspired by BB techniques to grow this subtree
and evaluate their effectiveness in various industrial-inspired problem settings.

The third part shifts focus to fairness in aggregating prosumers in electricity markets. We inves-
tigate fair resource allocation strategies that ensure each participant benefits from aggregation.
Using acceptability constraints and fairness operators, we design multi-period stochastic models
that incorporate fairness by construction. Unlike traditional financial compensation mechanisms,
our approach emphasizes fair decision-making in dynamic, uncertain environments, tested on
both deterministic and stochastic models.
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dernières années inoubliables. La tâche est ardue : traduire en mots l’immense gratitude que
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Metroners, qui ont su transformer notre lieu de travail en un espace chaleureux. Merci aux
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en moi, j’aurais bien ri. C’est pourtant le cœur serré que je songe au départ, et il m’est impossible
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Merci Emanuele pour ton énergie débordante. Merci Hélène d’être bien plus divertissante que
Grey’s Anatomy. Merci Anton pour ton autodérision hilarante. Merci Solal de toujours ralentir
pour moi. Merci Alfred d’être un shot de positivité. Merci Raian de me faire douter des légumes.
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Chapter 1

Introduction (en français)
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1.1 Conscience énergétique dans l’industrie . . . . . . . . . . . . . . . . . 13

1.1.1 METRON: une entreprise CleanTech française . . . . . . . . . . . . . . 13

1.1.2 Investir dans les micro-réseaux : quels enjeux? . . . . . . . . . . . . . . 14
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1.3 Outils et défis mathématiques . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 Formulation du problème . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.2 Programmation Dynamique et Approximations . . . . . . . . . . . . . . 26

1.3.3 Algorithmes de Programmation Dynamique . . . . . . . . . . . . . . . . 27

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.1 Conscience énergétique dans l’industrie

Cette thèse est réalisée en collaboration avec METRON, une CleanTech française spécialisée dans
la performance énergétique. METRON accompagne les groupes industriels et tertiaires dans
l’optimisation de leur consommation énergétique et la réduction de leurs émissions de carbone.
L’objectif de ce travail est d’améliorer notre compréhension des impacts des micro-réseaux dans un
contexte de production industrielle, et ainsi accompagner la transition énergétique de l’industrie.

1.1.1 METRON: une entreprise CleanTech française

METRON1, fondée en 2013, offre une solution digitale centrale pour la visualisation, le suivi,
l’optimisation et la modélisation IA de la stratégie de performance énergétique.

1https://www.metron.energy/
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14 CHAPTER 1. INTRODUCTION (EN FRANÇAIS)

Les principales fonctionnalités de la plateforme, illustrées dans la Figure 1.12, incluent la gestion
de l’acquisition sécurisée des données, ainsi que le suivi de la performance énergétique pour
visualiser, mesurer et comparer la consommation énergétique. La plateforme propose également
des analyses avancées pour optimiser l’utilisation de l’énergie et détecter les facteurs d’inefficacité.
Enfin, elle fournit des outils de gestion en temps réel des coûts énergétiques et de l’impact carbone,
aidant ainsi les organisations à prévoir leurs budgets et à gérer leurs stratégies de durabilité.

Figure 1.1: Fonctionnalités de la plateforme METRON

Cette thèse s’inscrit dans les projets d’optimisation énergétique de METRON, et examine en
particulier l’impact des investissements dans les micro-réseaux sur les groupes industriels. Les
aspects clés étudiés incluent les défis opérationnels de la gestion d’un micro-réseau, son influence
sur les pratiques de production existantes et les implications vis à vis de l’accès aux marchés de
l’énergie.

1.1.2 Investir dans les micro-réseaux : quels enjeux?

Le réchauffement climatique affecte considérablement la résilience des systèmes énergétiques et
nous incite à repenser notre façon de consommer l’énergie. Pour atteindre l’objectif de limiter la
hausse des températures en dessous de 2°C fixé par l’Accord de Paris de 2016 [COP16], il est
nécessaire de se tourner vers des sources d’énergie plus durables. Malgré des progrès notables, avec
les énergies renouvelables atteignant 14, 6% de la consommation énergétique primaire mondiale
et représentant près de 30% de la production mondiale d’électricité en 2023 (voir [Ins24]), ces
efforts sont loin d’être suffisants pour atteindre les objectifs climatiques fixés.

Un afflux d’investissements est orienté vers les technologies durables, telles que les énergies
renouvelables et le stockage d’énergie. Selon le rapport annuel de l’AIE [IEA24], les investissements
dans l’énergie verte devraient représenter les deux tiers des investissements énergétiques totaux
en 2024. La technologie photovoltäıque (PV) est en tête de ces investissements, surpassant
toutes les autres technologies de production d’électricité. Cependant, l’intermittence des énergies

2https://www.metron.energy/solution/
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renouvelables nécessite leur intégration à des systèmes de stockage d’énergie et l’amélioration des
infrastructures de réseau électrique.

Le secteur industriel en particulier doit réduire ses émissions de carbone et atténuer les risques
de dépendance vis-à-vis de systèmes énergétiques centralisés. Pour cela, les industriels peuvent
investir dans la génération d’énergie renouvelable couplée à des systèmes de stockage d’énergie,
tels que les micro-réseaux. Le ministère américain de l’Énergie définit un micro-réseau comme
“un groupe de charges interconnectées et de ressources énergétiques distribuées dans des limites
électriques clairement définies qui agit comme une entité contrôlable unique par rapport au
réseau.” Les micro-réseaux apportent de la flexibilité, notamment en cas de pénurie d’énergie,
car ils peuvent fonctionner indépendamment du réseau principal. Cependant, leur utilisation
entrâıne des complexités opérationnelles. Parallèlement, il est crucial d’améliorer l’efficacité
énergétique grâce à des technologies avancées ou des pratiques de production modernisées.

Le défi majeur est de trouver un équilibre entre les objectifs environnementaux et la viabilité
économique. En effet, des technologies comme les micro-réseaux, bien que prometteuses, peuvent
s’avérer extrêmement coûteuses sans soutien gouvernemental. Par exemple, une évaluation
économique des micro-réseaux basés sur les énergies renouvelables [Wan+20] met en évidence
le besoin de politiques plus efficaces pour encourager les investissements. Simultanément, la
pression pour réduire les émissions carbone augmentent, avec des mesures telles que les taxes
carbone. Le mécanisme d’ajustement carbone aux frontières de l’Union européenne CBAM vise,
par exemple, à taxer les produits importés en fonction de leur empreinte carbone.

Les entreprises industrielles bénéficieraient d’une expertise pour comprendre les défis liés à la ges-
tion de l’énergie. Toutefois, malgré le besoin d’efficacité énergétique, de nombreux groupes indus-
triels ne sont pas encore entièrement numérisés et restent peu informés sur les outils d’optimisation
et de science des données disponibles. Cette thèse vise à améliorer notre compréhension de
l’intégration des micro-réseaux dans les environnements industriels et à explorer des stratégies
pour optimiser leur utilisation.

Si le secteur industriel doit adapter sa consommation énergétique pour atteindre les objectifs
environnementaux, les marchés d’énergie doivent aussi s’adapter afin d’intégrer une production
énergétique décentralisée.

1.1.3 Vers un modèle de marché de l’énergie centré sur le consommateur

Avant toute chose, nous proposons un aperçu de l’industrie de l’électricité, basé sur l’ouvrage
[KS04]. Un système électrique connecte des moyens de production et de consommation d’électricité
qui impliquent divers acteurs: les gestionnaires de réseaux (qui gèrent les infrastuctures de
transport et de distribution), les producteurs d’énergie, les fournisseurs d’énergie (qui achètent
de l’énergie sur le marché de gros), les consommateurs (qui doivent acheter via des fournisseurs
ou peuvent accéder au marché de gros selon leur taille), et les régulateurs de marché.

Pendant plus d’un siècle, de la fin du XIXe siècle jusqu’aux années 1980, le marché de l’électricité
fonctionnait verticalement et était fortement réglementé : un même acteur contrôlait à la fois la
production, le transport et la distribution d’énergie aux consommateurs finaux. En conséquence,
les consommateurs n’avaient pas d’autre choix que d’acheter leur électricité auprès du fournisseur
local, en situation de monopole. À partir des années 1980, la libéralisation du marché de la
production de l’électricité conduit à une nouvelle organisation de marché de l’énergie.

Actuellement, les marchés de l’énergie se divisent en trois grandes catégories : le marché de
capacité, qui garantit une capacité de production suffisante ; le marché de l’énergie, qui optimise
la planification des échanges ; et le marché des services auxiliaires, qui soutient la stabilité du
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Marché Day Ahead Marché Intraday

15h 12h t− 15m t

Désequilibre?

Reserve contracts
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Figure 1.2: Illustration de la chronologie des marchés de l’énergie, à l’exclusion du marché à
terme où les contrats sont établis des mois ou des années à l’avance.

système électrique. En particulier, le marché de l’énergie interagit avec les acteurs énergétiques
selon différents horizons temporels (voir Figure 1.2). Le marché à terme comprend des contrats
à long terme pour la couverture des prix et la gestion des risques; le marché spot (ou day-ahead)
concerne les échanges d’énergie un jour à l’avance; le marché intraday permet des ajustements
jusqu’à une heure avant la production; et le marché d’équilibrage assure la stabilité du système
en temps réel. Plus précisément, les contrats de réserve sont activés sur le marché d’équilibrage
pour maintenir la stabilité du système et les participants qui perturbent l’équilibre du réseau sont
pénalisés. Dans cette thèse, nous nous concentrerons sur les marchés day-ahead et d’équilibrage.

Malgré la libéralisation des marchés d’énergie, ceux-ci restent en partie centralisés, ce qui empêche
les petits consommateurs de négocier directement le prix de l’énergie. Avec l’émergence des
prosumers (des acteurs à la fois consommateurs et producteurs d’énergie), certains marchés
évoluent progressivement vers un modèle plus décentralisé, où les prosumers jouent un rôle plus
actif. Un marché de l’énergie décentralisé, intégrant des prosumers intelligents, doit être conçu
pour gérer la complexité des différents services et acteurs qui peuvent changer de rôle. Plusieurs
conceptions de marché répondant à ces défis sont discutées dans l’article [PS16].

En particulier, certains prosumers peuvent souhaiter former une communauté et collaborer, un
processus pouvant être facilité par des entreprises de petite ou moyenne taille jouant le rôle
d’agrégateurs. Dans ce cas, les agrégateurs ont la responsabilité d’opérer le réseau efficacement,
d’optimiser les flux énergétiques, et de maintenir l’équité dans la répartition des bénéfices parmi
les participants. Intégrer la notion d’équité dans les modèles mathématiques couramment utilisés
dans ces domaines pose des défis significatifs. La subjectivité inhérente à l’équité nécessite une
approche élaborée et réfléchie. Cette problématique est examinée en profondeur dans la Partie
III de cette thèse.

1.1.4 Vers de nouvelles pratiques avec la RO

Pour comprendre et trouver des solutions aux problèmes que nous nous posons, nous utilisons
des outils de Recherche Opérationnelle (RO). Pour définir la RO, nous nous appuyons sur la
présentation qui en est faite par la Société Française de Recherche Opérationnelle et d’Aide à la
Décision (ROADEF) [ROA] : “La Recherche Opérationnelle (RO) est la discipline des méthodes
scientifiques utilisables pour élaborer de méilleures décisions. Elle permet de rationaliser,
de simuler et d’optimiser l’architecture et le fonctionnement des systèmes de production ou
d’organisation.” Cette définition, volontairement large, comprend un grand nombre de méthodes
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et d’applications. La RO vise à sélectionner et mettre en oeuvre des solutions efficaces au sein
de systèmes complexes, et est présente dans tous les grands secteurs industriels tels que les
transports, l’énergie, la production et les télécommunications.

Procédure
de RO

1. Formuler un
problème

2. Écrire un
modèle mathématique

3. Faire l’état de
l’art du sujet

4. Implémenter
un algorithme

5. Évaluer la
solution obtenue

traduire la réalité
en un modèle
mathématique

étudier les ap-
proches existantes

déterminer une
méthode de résolution

tester sur des
données réelles

Figure 1.3: La méthodologie en RO.

La RO comprend une grande variété d’outils, allant des théories abstraites (comme la théorie des
graphes, la théorie de la complexité ou la théorie des polyhèdres) aux algorithmes pratiques (par
exemple l’algorithme du simplexe pour la programmation linéaire, l’algorithme de Dijkstra pour
le plus court chemin ou la méthodologie de branch-and-bound pour la programmation linéaire en
nombres entiers). Une simplification de la méthodologie de la RO en un processus structuré en
cinq étapes est illustrée dans la Figure 1.3.

Tout d’abord, un problème du monde réel est formulé et traduit en un modèle mathématique.
Après une étude approfondie de la littérature académique, le problème est classé et les approches
de solution existantes sont identifiées. Une méthode appropriée est ensuite sélectionnée ou
adaptée pour trouver une solution au problème initial. Celle-ci est testée et analysée pour
évaluer son efficacité. Si la solution n’est pas satisfaisante, le processus est repris, permettant des
ajustements dans les étapes de modélisation ou d’implémentation pour affiner les hypothèses ou
améliorer les performances jusqu’à l’obtention d’un résultat satisfaisant.

Le principal défi de la RO est de trouver le juste équilibre entre une solution approximative, basée
sur des modèles simplifiés, et une solution de haute qualité réalisable en pratique et satisfaisante
pour les décideurs. Un exemple notable d’application de la RO est le problème du routage
de véhicules, utilisé par des entreprises comme Renault ou la SNCF, qui vise à optimiser les
itinéraires d’une flotte de véhicules pour desservir un ensemble de clients. Un autre grand succès
de la RO est le problème de la coordination d’un système de barrages hydroliques: le système
électrique brésilien est opéré quotidiennement à l’aide d’algorithmes d’optimisation stochastique.

1.2 Modèles Mathématiques

Nous présentons ici quelques modèles de RO qui permettent d’analyser l’impact de l’investissement
dans un micro-réseau électrique sur les problèmes de production industrielle. Nous commençons
par les problèmes de production, où l’utilisation de variables binaires est nécessaire pour
représenter diverses contraintes techniques. Ensuite, nous abordons les problèmes d’appro-
visionnement en énergie, qui sont intrinsèquement stochastiques i.e., aléatoires, en raison des
énergies renouvelables. L’intégration de ces deux problématiques donne naissance à un modèle
complexe, combinant variables entières et incertitudes. Enfin, nous examinons les défis de
modélisation associés à l’agrégation de plusieurs entités, dans le but de générer des bénéfices
collectifs.
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1.2.1 Problèmes de production : le rôle majeur des variables binaires

L’optimisation de la gestion des stocks et de la planification des opérations est un défi majeur dans
un environnement de production. Cette section présente un modèle générique de planification,
illustrant certaines des contraintes spécifiques qu’on peut rencontrer.

Soit une usine disposant de I machines et de J produits, stockés dans des entrepôts à capacité
limitée. L’objectif est d’établir un plan de production détaillé pour cette usine sur un horizon
donné (par exemple une journée, une semaine, etc.). Pour cela, nous divisons l’horizon en
intervalles de temps discrets, appelés étapes, indexés par t ∈ [T ] où T représente le nombre total
d’étapes. Le plan de production indique pour chaque étape les quantités de produits à fabriquer
et à stocker afin de satisfaire une demande (les commandes entrantes). L’objectif est de minimiser
les coûts de l’usine, qui incluent les coûts de production et de stockage, ce qui mène au modèle :

Min
u,b,s

T∑
t=1

f ijt (uijt , b
ij
t , s

j
t ) (1.1a)

s.t. sjt = sjt−1 +
∑
i

uijt − d
j
t ∀t, j (1.1b)

sj ≤ sjt ≤ sj ∀t, j (1.1c)

uij bijt ≤ u
ij
t ≤ uij b

ij
t ∀t, i, j (1.1d)

{uijt }i,j ∈ Ut ∀t (1.1e)

{bijt }i,j ∈ Bt ∩ {0, 1}I×J ∀t, (1.1f)

où uijt représente la quantité de produit j produite sur la machine i à l’étape t, bijt est une variable
binaire qui vaut 1 si uijt > 0 et 0 autrement, et sjt modélise la quantité de produit j qui est
stockée dans l’entrepôt à la fin de l’étape t. L’objectif (1.1a) consiste à minimiser la somme des
coûts sur l’horizon, où f ijt est une fonction qui modélise les coûts associés aux variables uijt , b

ij
t , et

sjt . Pour des raisons de faisabilité, f est généralement une approximation linéaire ou convexe de
la fonction de coûts réelle. Les contraintes (1.1b) décrive des dynamiques classiques de stock: le
niveau de stock à l’étape précédente détermine le niveau de stock à l’étape t, ajusté en fonction
de la production et de la satisfaction de la demande. De plus, le stockage est limité (1.1c). La
production de j sur une machine est discontinue: en effet, si j est produit sur la machine i, la
quantité produite doit être comprise entre uij et uij , sinon elle vaut 0. Les variables binaires
sont essentielles pour modéliser cette discontinuité (1.1d). En effet, si bijt = 0, ce qui veut dire
qu’on ne produit pas, alors 0 ≤ uijt ≤ 0; sinon, uijt ≤ u

ij
t ≤ u

ij
t . Enfin, on réunit l’ensemble des

contraintes imposées par les procédures de production dans les ensembles d’acceptabilité Ut (1.1e)
et Bt (1.1f).

Dans les problèmes de production, les variables binaires sont un outil efficace pour modéliser
les contraintes physiques liées au fonctionnement des machines (voir les contraintes (1.1d)). En
général, une machine i ne peut produire qu’un seul produit à la fois, ce qui se modélise par:

bijt = 1 =⇒ bij
′

t = 0 ∀j′ 6= j.

On peut ré-écrire cette condition comme contrainte qui sera inclue dans Bt,∑
j

bijt ≤ 1. (1.2)

Un autre exemple, nommé contraintes de ressources partagées ou d’incompatibilité, représente
l’interdiction de produire les produits j et j′ simultanément (à la même étape). Ces contraintes
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découlent souvent de préférences opérationnelles ou de limitations du personnel. Pour modéliser
cette incompatibilité de j et j′, on utilise l’inégalité:

max
i
bijt + max

i
bij
′

t ≤ 1. (1.3)

Ici, maxi b
ij
t vaut 0 si j n’est pas produit à l’étape t et 1 sinon. Alors, la contrainte garantit

qu’un seul des produits j ou j′ est produit à l’étape t. Dans le cas contraire, cela entrâınerait
l’inégalité invalide 2 ≤ 1.

La variable sjt est également appelée variable d’état car elle décrit, en partie, l’état de l’usine à
l’étape t, en fonction des décisions prises précédemment. Dans le problème décrit, l’état de l’usine
est entièrement représenté par les niveaux de stock de chaque produit. Cependant, si le problème
devient plus complexes, il pourrait être nécessaire d’introduire des variables supplémentaires
pour décrire le système de l’usine à un instant donné. Supposons, par exemple, que certaines
machines ne doivent pas être allumées plus de Li fois sur l’ensemble de la période considérée, de
t = 1 à T . Ces contraintes, appelées contraintes de compteurs, nécessite les nouvelles variables
d’état cit qui comptent le nombre de fois que la machine i a été allumée à t. Alors, on les modélise
avec les équations suivantes.

cit = cit−1 + 1∑
j b
ij
t −

∑
j b
ij
t−1=1

∀t, i (1.4a)

0 ≤ cit ≤ Li ∀t, i. (1.4b)

Ici,
∑

j b
ij
t vaut 1 si la machine i est allumée à l’étape t (rappelons que la somme est inférieure à

1, voir (1.2)), et 0 sinon. Alors, le compteur cit est égal au compteur précédent cit−1 plus 1 si la
machine est allumé à t, ce qui amè,e aux dynamiques (1.4a). Enfin, on s’assure que la limite
d’allumage Li n’est pas dépassée avec les contraintes (1.4b).

Afin d’atténuer l’usure des machines, il peut être exigé qu’une machine i reste en fonctionnement
(resp. à l’arrêt) pendant un certain nombre d’étapes consécutives. Pour ces contraintes de temps
de fonctionnement/arrêt minimum, des variables binaires supplémentaires sont nécessaires: upit
(resp. downit) vaut 1 si la machine i est mise en marche (resp. arrêtée) à l’étape t, et 0 sinon.
Enfin, ces nouvelles contraintes sont modélisées par

upit − downit =
∑
j

bijt −
∑
j

bijt−1 ∀t, i (1.5a)

upit + downit ≤ 1 ∀t, i (1.5b)

t∑
τ=t−M i

upit ≤
∑
j

bijt ∀t > M i, i (1.5c)

t∑
τ=t−mi

downit ≤ 1−
∑
j

bijt ∀t > mi, i, (1.5d)

où les équations (1.5a) et (1.5b) guarantissent que upit et downit aient les bonnes valeurs. Plus
précisément, si la machine i est allumée à l’étape t, alors upit − downit = 1, et comme downit est
binaire, il suit que upit = 1. De la même manière, si la machine i est éteinte à l’étape t, on doit
avoir downit = 1. Quand la machine i reste soit allumée, soit éteinte à l’étape t, upit − downit = 0,
et la contrainte (1.5b) guarantit que upit et downit valent 0. Enfin, pour décrire l’état de l’usine à
l’étape t, il nous faut plus d’information sur les M i (resp. mi) dernieres étapes: {upτ}τ∈[t−M i,t]

et {downτ}τ∈[t−mi,t]. Dans cet exemple, le rôle crucial des variables binaires pour modéliser
correctement le fonctionnement de l’usine est mis en évidence.
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Si le problème est linéaire, autrement dit toutes les contraintes et l’objectif du problème sont des
fonctions linéaires des variables, il fait partie de la classe des Programme Linéaire en variables
Mixtes (PLM). Tant qu’ils sont de taille raisonnable, les PLM peuvent être résolus efficacement
avec des solvers comme Gurobi ou HiGHS. Dans le cas inverse, cela peut être dû aux variables
binaires qui complexifient trop le problème, auquel cas on considère naturellement la relaxation
continue du problème. Toutefois, réparer une solution relâchée d’un PLM peut s’avérer aussi
compliqué que de trouver une solution au problème initial.

La production d’une usine génère une demande en énergie qui est en général satisfaite en
achetant de l’énergie auprès d’un fournisseur. Cependant, dans le cas où l’usine investit dans
un micro-réseau c’est-à-dire un système de génération et de stockage d’énergie, la question qui
se pose est celle de l’exploitation optimal dumicro-réseau. Dans l’intention de répondre à cette
problématique, nous présentons dans la section suivante un modèle qui optimise la gestion d’un
micro-réseau. Dans un premier temps, on réduit la demande énergétique du micro-réseau à un
paramètre fixé.

1.2.2 Problème de gestion d’un micro-réseau: optimisation sous incertitudes

Dans un contexte énergétique, les problèmes que l’on rencontre sont soumis à de nombreuses
incertitudes, en particulier si on considère la génération d’énergies renouvelables qui sont in-
trinsèquement imprévisibles. Si on peut prédire en partie le comportement des renouvelables,
par exemple l’énergie solaire qui suit des cycles jour-nuit, il reste une partie d’aléas. De la même
manière, il est difficile de prédire les prix de l’énergie, volatiles et multi-factoriels, ou la demande
en énergie. Ces incertitudes affectent à la fois les contraintes et l’objectif des modèles liés à
l’énergie, et ont ainsi un impact sur les solutions obtenues en RO. Pour obtenir des solutions
adaptées, nous nous tournons vers des théories d’optimisation sous incertitudes.

0 1 2 t t+ 1 T
temps

ξ1 ξ2 ξt ξt+1 ξT

Observations

u1(ξ[1]) u2(ξ[2]) ut(ξ[t]) ut+1(ξ[t+1]) uT (ξ[T ])

Décisions

Figure 1.4: Coordination entre les observations et la prise de décision au cours du temps: à
chaque étape t, on observe l’aléa ξt, pui on prend la décision ut(ξ[t]), fonction de l’information
observée jusque là ξ[t] = {ξ1, . . . , ξt}.

On considère un problème multi-étapes, où des décisions (continues ou binaires) sont prises
séquentiellement à chaque étape. Dans cette thèse, nous considérons une structure d’information
d̂ıte Hasard-Décision où les incertitudes sont observées avant la prise de décision à chaque étape,
voir Figure 1.4. La structure inverse, Décision-Hasard, existe, ainsi que d’autres structures plus
complexes comme Hasard-Décision-Hasard. On trouve dans la litérature plusieurs manières
d’incorporer les incertitudes à la modélisation du problème qui dépendent principalement de ce
que l’on sait de ces incertitudes. Par exemple, dans le cas où on connâıt un ensemble d’incertitudes
qui les contient, on peut avoir recours à l’optimisation robuste qui consiste à optimiser le problème
dans le pire cas. Plus précisément, il s’agit de sélectionner une solution en supposant que l’aléa
que l’on observera est le pire scénario pour cette décision. Nous nous plaçons dans le paragdime
de l’optimisation stochastique, qui modélise les incertitudes comme des variables aléatoires dont
on connâıt la distribution.
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S’il peut parâıtre optimiste de supposer qu’on connâıt la distribution des paramètres énergétiques,
les avances récentes en collecte et analyse de la donnée justifie cette approche. Par exemple, la
Commission Européenne met a disposition les données3 nécessaires pour estimer la puissance
solaire perçue par des panneaux photovoltaiques depuis 2005 partout en Europe. De plus, on
peut accéder aux prix de l’énergie sur différents marchés (comme le day-ahead ou intraday)
sur le site web de EPEX Spot4. L’avancée de la recherche sur les algorithms de prédiction,
par exemple à l’aide du machine learning, couplé avec l’abondance de données dont on dispose,
permet d’estimer les lois de probabilité que suivent ces paramètres énergétiques.

Le problème qui nous intéresse est d’opérer un micro-réseau composé de plusieurs unités de
génération d’énergie g ∈ G et d’un Système de Stockage d’Énergie (SSE)– ou batterie– dans
lequel on peut stocker de l’énergie. Les unités de génération d’énergie renouvelable, g ∈ Gre ⊂ G,
comme les panneaux solaires ou les éoliennes, ne sont pas contrôlables: l’énergie générée dépend
uniquement de conditions externes. En revanche, les unités non-renouvelables, g ∈ G \ Gre,
peuvent être contrôlées de manière analogue aux machine des productions modélisées dans la
Section 1.2.1: on peut ajuster leur niveau de production tant que des contraintes physiques
sont respectées. Le micro-réseau doit répondre à une demande en énergie. Il est aussi connecté
au réseau principal, ce qui lui permet d’acheter de l’énergie sur les marchés day-ahead (DA)
et d’équilibrage (B). Le problème de gestion du micro-réseau consiste à déterminer les flux
d’énergie qui permettent de satisfaire la demande en énergie sur un laps de temps donné. Plus
concrètement, à chaque étape t ∈ [T ], on doit décider quelle quantité d’énergie produire sur
chaque unité non-renouvelable, l’énergie à charger ou décharger du SSE, et l’énergie à acheter
sur les différents marchés d’énergie. Dans ce problème, les principales sources d’incertitude sont
l’énergie disponible via les unités renouvelables, la demande en énergie et les prix de l’énergie.
On les modélise comme des variables aléatoires discrètes dont on connâıt la distribution, ce qui
mène au programme stochastique linéaire multiétapes:

Min
SOC,q,φ

E
[ T∑

t=1

pDAt qDAt + pBt q
B
t )

]
(1.6a)

s.t
∑
g∈Gre

qgt +
∑

g∈G\Gre

qgt − φ
+
t + φ−t + qDAt + qBt ≤ qload

t ∀t (1.6b)

SOCt = SOCt−1 + ηφ+
t −

1

η
φ−t ∀t (1.6c)

SOC ≤ SOCt ≤ SOC ∀t (1.6d)

(qDAt , qBt ) ∈Mt ∀t (1.6e)

(φ+
t , φ

−
t , (q

g
t )g∈G\Gre) ∈ Et ∀t (1.6f)

σ(ξt) ⊂ σ(ξ1, . . . , ξt−1) ∀t. (1.6g)

A l’étape t, qDAt (resp. qBt ) représente l’énergie achetée au marché day-ahead (resp. d’équilibrage);
qgt l’énergie générée par l’unité non-renouvelable g ∈ G \ Gre; φ+

t (resp. φ−t ) l’énergie chargée
(resp. déchargée) dans la batterie; et SOCt l’énergie contenus dans la SSE. Les incertitudes de
l’étape t sont contenues dans le vecteur aléatoire ξt := (pDAt ,pBt , (q

g
t )g∈Gre , q

load
t ) où pDAt (resp.

pBt ) est le prix aléatoire du marché day-ahead (resp. d’équilibrage); qgt la génération alétoire
de l’unité renouvelabale g ∈ Gre; et qload

t la demande aléatoire en énergie que le micro-réseau
doit satisfaire. La fonction objectif (1.6a) est de minimiser la somme des coûts d’énergie en
moyenne. La principale contrainte (1.6b) du problème est d’assurer l’équilibre énergétique: la

3https://re.jrc.ec.europa.eu/pvg_tools/en/
4https://www.epexspot.com/en

https://re.jrc.ec.europa.eu/pvg_tools/en/
https://www.epexspot.com/en
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demande énergétique doit être satisfaite grâce à la production énergétique, les opérations du
SSE et les achats énergétiques. La quantité d’énergie contenus dans le SSE est bornée (1.6d)
et suit des dynamiques de stock classiques (1.6c). Les variables de décisions sont sujettes à des
contraintes d’acceptabilité (1.6e) et (1.6f), qui généralisent de nombreuses contraintes techniques.
Enfin, on modélise la structure d’information de l’aléa à l’étape t avec les contraintes de non-
anticipativité (1.6g): les décisions sont prises sans connâıtre les aléas à partir de t+ 1, seulement
leur distribution.

Le problème (1.6) est linéaire et continu (toutes les variables sont continues). Il est courant en
optimisation stochastique de supposer que les variables aléatoires ξ[T ] sont indépendantes étape
par étape i.e., ξt et ξt′ sont des variables indépendantes pour tous t 6= t′. En général, cette
hypothèse n’est pas vérifiée dans la réalité, mais elle permet d’élaborer des algorithmes efficaces
qui reposent sur les principes de Programmation Dynamique (PD). Dans le cas particulier où le
problème et indépendant étape par étape et que la fonction objective est convexe, le problème est
un Programme Stochastique Linéaire Multiétapes qui peut être résolu grâce à des algorithmes de
génération de coupes.

Historiquement, le problème de planification de la production et celui de la gestion d’un micro-
réseau sont étudiés et résolus séparemment. Toutefois, résoudre ces problèmes simultanément
est essentiel pour accompagner les groupes industriels à investir dans des micro-réseaux. A ces
fins, nous combinons les deux problèmes, en simplifiant le lien qui les unit à la demande en
énergie. Celle-ci est dorénavant modélisée comme résultat des décisions de production de l’usine
plutôt que comme une variable aléatoire. Nous présentons dans la section suivante un problème
d’optimisation de planification couplée de production et d’énergie.

1.2.3 Un modèle générique pour la planification couplée de production et
d’énergie

On présente maintenant modèle cadre générique qui vise à déterminer simultanément un planning
de production avec les opérations d’un micro-réseau. On lie les Problèmes (1.1) et (1.6) à l’étape
t à travers la demande en énergie qloadt qui est fonction des décisions de production u et b. On
modélise le problème comme un Programme Stochastique Linéaire Multiétapes à variables mixtes
(à la fois entières et continues):

Min
SOC,q,φ,u,b,s

E
[ T∑

t=1

pDAt qDAt + pBt q
B
t + f ijt (uijt , b

ij
t , s

j
t )

]
(1.7a)

s.t
∑
g∈Gre

qgt +
∑

g∈Gnre

qgt − φ
+
t + φ−t + qDAt + qBt ≤ qload

t ∀t (1.7b)

qloadt = gt(u
ij
t , b

ij
t ) ∀t. (1.7c)

(1.1b) to (1.1f)

(1.6b) to (1.6g)

Dans le Problème (1.2.3), on trouve toutes les variables des Problèmes (1.1) et (1.6) et les
contraintes qui leurs sont associées: le contraintes de production (1.1b) - (1.1f) et celles d’énergie
(1.6b) - (1.6g). Le lien entre les deux problèmes est modélisé à travers la contrainte d’équilibre
énergétique (1.7b), où qloadt est fonction des variables {uijt , b

ij
t }. Plus précisément, on considère

une fonction gt qui calcule la consommation énergétique qloadt (1.7c) nécessaire au planning de
production à l’étape t. A nouveau, pour des raisons de calculabilité, on suppose g linéaire. Enfin,
la fonction objectif à minimiser est la somme des coûts de production (1.1a) et d’énergie (1.6a).
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Si le problème contient un grand nombre de variables, la combinaison des incertitudes avec
des variables entières le rend particulièrement difficile à résoudre. S’il existe des algorithmes
théoriques exacte, ils convergent lentement. Dans Part II, nous proposons une méthode alternative
pour résoudre ces problèmes difficiles.

Remark 1 (Extension de l’état). Comme dans la Section 1.2.1, en fonction du problème on peut
étendre l’état du système pour inclure de l’information supplémentaire. Par exemple, dans le cas
des contraintes de fonctionnement/arrêt minimum, on aura aussi besoin des variables de mise en
marche/d’arrêt {upiτ}τ∈[t−M i,t] and {downiτ}τ∈[t−mi,t] pour décrire l’état du système à l’étape t.

1.2.4 Agréger des entités indépendantes

Dans la section précédente, nous avons introduit le problème de planification couplée de production
et d’énergie pour une usine unique. Dans certains cas, un décideur peut avoir à superviser seul
plusieurs usines, ce qui revient à résoudre plusieurs variantes du Problème (1.7). Par exemple,
si une entreprise possède plusieurs sites de production, il est naturel de vouloir coordonner la
production et le stockage des différents sites pour minimiser les coûts globaux. Dans un autre
contexte, une entreprise externe peut proposer comme service d’agréger des prosumers sur les
marchés d’énergie. Certains marchés d’énergie ne sont accessibles qu’à partir d’une certaine taille
(un volume d’énergie à vendre ou à acheter suffisant). Alors, des prosumers indépendants peuvent
trouver un intérêt économique à se regrouper pour accéder à ces marchés, par exemple pour
acheter des blocs d’énergie à un tarif préférentiel à se partager ensuite. Dans cette situation, il est
avantageux qu’un seul décideur, qui connaisse les besoins de chacun, soit en charge d’optimiser
les problèmes d’approvisionnement en énergie de ces différents prosumers collectivement plutôt
qu’individuellement. Cela mène à la résolution de plusieurs problèmes (1.7) couplés par des
décisions communes, ce qui peut être modéliser comme un très large problème stochastique.

Dans la Section 1.2.3, nous avons vu comment combiner les deux problèmes de planification de
production et de gestion d’un micro-réseau: il s’agit essentiellement de juxtaposer les variables
et contraintes des deux problèmes, et ceux-ci sont liés via les variables qloadt et la contrainte
d’équilibre énergétique. L’objectif est de minimiser les coûts globaux de l’usine, ce qui correspond
à la somme des coûts de production et d’énergie. Nous pouvons procéder de la même manière
pour modéliser l’agrégation de plusieurs entités. Toutefois, à la différence du problème traité
dans la Section 1.2.3, les entités agrégées peuvent avoir des intérêts contradictoires. En effet,
chaque entité a pour objectif de minimiser ses propres coûts, pas ceux de l’agrégateur. Le rôle de
l’agrégateur externe est de trouver le juste équilibre entre optimiser les coûts globaux et garantir
une répartition équitable des bénéfices entre les entités.

Traduire le concept d’équité en mathématiques n’est pas évident : il n’y a pas de définition
universelle de l’équité et on peut en trouver des interprétations différentes voire contradictoires.
Nous examinons différentes approches pour modéliser l’équité dans la Part III, en particulier
dans un contexte d’aggrégation de prosumers.

1.3 Outils et défis mathématiques

Cette section est une introduction à l’optimisation stochastique, l’approche choisie pour résoudre le
Problème (1.7). Plus précisément, nous examinons les méthodes de décomposition qui s’applique
à la résolution d’un Problème Stochastic Multiétapes Linéaire en variables continues et Binaires
(PSMLB). Tout d’abord, nous donnons une formulation générique d’un PSMLB ainsi qu’une
formulation déterministe équivalente. Puis, nous présentons des sous-problèmes qui permette de
mettre en place une approche par Programmation Dynamique (PD) appuyée par les principes de
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Bellman. Enfin, à l’aide des opérateurs de Bellman, nous pouvons développer des politiques pour
résoudre le problème, c’est-à-dire une implémentation des décisions ici et maintenant optimales
à prendre.

1.3.1 Formulation du problème

Tout d’abord, nous proposons une formulation abstraite et compacte du Problème (1.7). Dorénavant,
le caractère gras désigne les variables aléatoires, et nous notons [n] = {1, . . . , n} l’ensemble des
entiers positifs non nuls jusqu’à n. On considère un problème multiétapes où l’ensemble des
incertitudes est modélisé par une séquence de variables aléatoires exogènes ξ[T ], aussi appelées
aléas. On suppose que chaque aléa ξt suit une loi de probabilité à support discret, que l’on
connâıt, dans l’espace de probabilités (Ω,A,P). Les variables de contrôle sont soit continues, soit
binaires. On obtient la formulation générique d’un PSMLB:

min
x,y,b

E

[
T∑
t=1

Lt(xt−1,yt, bt, ξt)

]
(1.8a)

xt = Ft(xt−1,yt, bt, ξt) ⊂ Xt ∀t ≥ 1 (1.8b)

yt ∈ Yt(xt−1, ξt) ∀t ≥ 1 (1.8c)

bt ∈ Bt(xt−1, ξt) ∩ {0, 1}nb ∀t ≥ 1 (1.8d)

σ(yt, bt) ⊂ σ(ξ1, . . . , ξt) ∀t ≥ 1 (1.8e)

x0 = xinit. (1.8f)

Dans le Problème (1.8), x[T ] est une séquence de variables aléatoire d’états qui décrivent l’état du
système à chaque étape, et qui suit une dynamique linéaire (1.8b) dans l’espace de faisabilité X[T ].
Soit nb, le nombre de variables binaires par étape, on note yt (resp. bt) les variables de contrôle
continues (resp. binaires) de l’étape t, qui doivent satisfaire des contraintes linéaires contenues
dans les ensembles de contrainte Yt(xt−1, ξt) (1.8c) et Bt(xt−1, ξt) (1.8d). En optimisation
stochastique, les variables d’état et de contrôle sont des variables aléatoires qui doivent respecter
les contraintes de non-anticipativité (1.8e). Ces dernières contrôlent la quantité d’information
disponible à l’étape t : on observe l’aléa à t avant de prendre des décisions, sans savoir ce que
sera l’aléa futur. En particulier, cette contrainte de mesurabilité implique que les variables d’état
et de contrôle à t sont des fonctions (mesurables) de l’aléa passé (ξ[t]). Enfin, l’objectif (1.8a) est
de minimiser la somme des coûts en moyenne. On peut décomposer les coûts par étape : le coût
instantané de l’étape t est une fonction linéaire Lt qui dépend des variables et de l’aléa à t, ainsi
que de l’état du système à l’étape précédente xt−1.

Remark 2 (Hypothèses de linéarité). Les notations utilisées dans le Problème (1.8) proviennent
d’un cadre plus général : l’hypothèse de linéarité n’est pas nécessaire pour la PD classique et
la convexité suffit pour les algorithmes comme SDDP (présenté dans la suite de la section).
Toutefois, afin de pouvoir utiliser les solvers des PLM, nous supposons dans cette thèse qu’à
chaque étape, le problème instantané peut être formulé comme un PLM.

Il n’est pas immédiat d’adapter les algorithmes d’optimisation classiques à des modèles contenant
des variables aléatoires. Toutefois, si celles-ci ont un support discret, le problème peut être
reformulé comme un PLM. À cette fin, nous commençons par construire un arbre de scénario qui
encapsule l’entièreté des incertitudes du problème tout en conservant la structure d’information.
Généralement, l’arbre de scénario T est défini comme la collection de tous les scénarios, où chaque
scénario {ξjtt }t∈[T ] représente une réalisation de ξ[T ], ce dernier contenant toutes les étapes.

On représente un exemple d’arbre de scénario pour un problèmes avec 4 étapes dans la Figure 1.5,
où les incertitudes qui nous intéresse sont les conditions météorologiques– en particulier, s’il
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Figure 1.5: Exemple d’un arbre de scénario T où il y a deux possibilités à chaque étape: soit il
fait beau, soit il pleut. Un scénario est alors une séquence contenant ce qu’il s’est passé au cours

des 4 étapes. Par exemple, le scénario ( , , , ) est représenté dans l’arbre par le noeud
ν28.

pleut ou s’il fait beau à chaque étape. À partir de la racine de l’arbre r, les deux possibilités à
l’étape t = 1 sont représentées par les noeuds ν1, qui correspond au cas où il fait beau, et ν2 s’il
pleut. Puis, sachant qu’il a fait beau ou qu’il a plu à t = 1, il y a à nouveau deux cas possibles
pour l’étape 2, ce qui aboutit à 4 noeuds {νk}k∈[3:6] qui modélisent les scénarios possibles à t = 2.
Notez que chaque couche de l’arbre correspond aux possibilités d’information disponible à une
étape donnée du problème. De manière formelle, une couche Nt est définie par l’ensemble des
noeuds de l’arbre T qui ont la profondeur t (à une distance t de la racine), et on note a(ν) le
prédécesseur de ν dans l’arbre, aussi appelé parent de ν. Par exemple dans la Figure 1.5 ν5 est
le parent de ν11 et ν12. Dans le Chapitre 4, on déroule une définition rigoureuse de l’arbre de
scnéario appuyée par la théorie des graphes.

La structure de l’arbre de scénario permet de reformuler le Problème (1.8) comme un problème
déterministe où les variables dépendent d’un noeud de l’arbre ν au lieu d’une étape t, et les
dynamiques (1.8b) lient maintenant un noeud ν à son parent a(ν) au lieu d’une étape t à l’étape
précédente t− 1. On note πν la probabilité d’être dans le noeud ν qui représente le scénario ξ[t]

i.e., le produit des probabilités conditionnelles du chemin qui relie r à ν dans l’arbre de scénario

πν = P(ξt = ξt, a(ν)) = P(ξt = ξt| a(ν) )πa(ν),

avec πr = 1. Enfin, on reformule le problème comme un PLM, appelé formulation extensive ou
équivalent déterministe du Problème (1.8):

min
x,y,b

T∑
t=1

∑
ν∈Nt

πνLt(xa(ν), yν , bν , ξν) (1.9a)

xν = Ft(xa(ν), yν , bν , ξν) ⊂ Xν ∀t ≥ 1,∀ν ∈ Nt (1.9b)

yν ∈ Yν(xa(ν), ξν) ∀t ≥ 1,∀ν ∈ Nt (1.9c)

bν ∈ Bν(xa(ν), ξν) ∩ {0, 1}nb ∀t ≥ 1,∀ν ∈ Nt. (1.9d)

xr = xinit (1.9e)

Le Problème (1.9) est équivalent au Problème (1.8): l’espérance des coûts (1.8a) se réécrit comme
une somme, comme ξ[T ] sont à support fini; les contraintes de non-anticipativité (1.8e) sont
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assurées par la structure de l’arbre de scénario. On rappelle que toutes les contraintes (les
dynamiques Fν et les ensembles de faisabilité Xν ,Yν ,Bν), ainsi que les fonctions de coût Lt sont
linéaires. Ainsi, le Problème (1.9) est bien un PLM. S’il existe des algorithmes efficaces pour
résoudre les PLM, la taille du problème formulé ici est telle que le problème ne peut être résolu
avec des solvers si l’horizon du problème dépasse quelques unités.

1.3.2 Programmation Dynamique et Approximations

Les PSMLB sont connus pour être difficiles à résoudre, même en ayant recours à des approxima-
tions. Toutefois, sous certaines hypothèses Markoviennes, on peut décomposer le problème à
T−étapes en une séquence de sous-problèmes à τ−étapes paramétrisés. Cette décomposition est
particulièrement adaptée à une approche par Programmation Dynamique (PD) qui consiste à
décomposer un problème complexe en des sous-problèmes plus petit, à partir desquels on peut
retrouver une solution du problème original.

Nous supposons dorénavant que les aléas sont indépendants étapes par étapes, autrement dit
(ξ1, . . . , ξT ) est une séquence de variables aléatoires indépendentes une à une. Alors, si notre
problème est formulé comme dans (2.8), la théorie de la programmation dynamique dit qu’à
une étape donnée t, les seules informations nécessaires pour prendre des décisions optimales
maintenant sont l’état du système xt−1 et l’aléa observé à t. Nous définissons donc une séquence
de sous-problèmes qui dépendent uniquement de l’état entrant du système x:

Vt(x) := min
x[t:T ],y[t:T ],b[t:T ]

E

[
T∑
τ=t

Lτ (xτ−1,yτ , bτ , ξτ )

]
(1.10a)

xτ = Fτ (xτ−1,yτ , bτ , ξτ ) ⊂ Xτ ∀τ ≥ t (1.10b)

yτ ∈ Yτ (xτ−1, ξτ ) ⊂ Rnu ∀τ ≥ t (1.10c)

bτ ∈ Bτ (xτ−1, ξτ ) ∩ {0, 1}nb ∀τ ≥ t (1.10d)

σ(yτ , bτ ) ⊂ σ(ξ1, . . . , ξτ ) ∀τ ≥ t (1.10e)

xt−1 = x. (1.10f)

Les fonctions {Vt}t∈[T ] sont appelées fonctions de Bellman. Vt(x) représente le coût optimal à
partir de maintenant (de l’étape t) si l’état initial du système est x. En appliquant les principes
de PD de Bellman, on obtient la récursion :

V̂t(x, ξ) = min
y,y,b

Lt(x, y, b, ξ) + Vt+1(z) (1.11a)

z = Ft(x, y, b, ξ) ⊂ Xt (1.11b)

y ∈ Yt(x, ξ) (1.11c)

b ∈ Bt(x, ξ) ∩ {0, 1}nb (1.11d)

Vt(x) = E [ V̂t(x, ξt) ]. (1.11e)

Alors, on peut récursivement calculer l’ensemble des fonctions de Bellman, jusqu’à obtenir
V1(xinit), qui est la valeur optimale du Problème (1.8). En pratique, ces fonctions sont difficiles à
calculer, et on peut au mieux les approximer. En effet, il y a peu de cas où on connâıt l’expression
explicite de Vt(x). Si l’état du système est continu, pour obtenir une approximation de Vt(x), on
doit calculer Vt(x

i) sur un nombre fini de points {xi}i∈[I] dans l’espace des états; alors on étend
la définition de Vt(x) à tout point x par interpolation sur les valeurs {Vt(xi)}i∈[I].

Dans l’intention de développer une méthodologie adaptée à n’importe quelle approximation R
des fonctions de Bellman, on présente les opérateurs arrière de Bellman qui estiment le coût
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optimal de t à T à partir de l’approximation des fonctions de Bellman à t+ 1i.e.,

B̂t(R)(x, ξ) = min
z,y,b

Lt(x, y, b, ξ) +R(z) (1.12a)

z = Ft(x, y, b, ξ) ⊂ Xt (1.12b)

y ∈ Yt(x, ξ) (1.12c)

b ∈ Bt(x, ξ) ∩ {0, 1}nb (1.12d)

Bt(R)(x) = E [ B̂t(R)(x, ξ) ]. (1.12e)

De manière analogue, on définit les opérateurs avant de Bellman qui détermine la décision à
prendre à l’étape t à partir de l’état courant x, de l’aléa et de l’approximation des fonctions de
Bellman:

F̂t(R)(x, ξ) ∈ arg min
z,y,b

Lt(x, y, b, ξ) +R(z) (1.13a)

z = Ft(x, y, b, ξ) ⊂ Xt (1.13b)

y ∈ Yt(x, ξ) (1.13c)

b ∈ Bt(x, ξ) ∩ {0, 1}nb . (1.13d)

Les opérateurs avant construisent la politique optimale induite par une séquence d’approximations
{Rt}t∈[T ], où politique est une règle de décision qui donne les décisions ici-et-maintenant optimales
en fonction des coûts futurs estimés Rt. En pratique, à une étape donnée t où l’état du système
actuel est xt−1, on observe l’aléa ξt, et on calcule les décisions optimales localement à prendre, et le
nouvel état du système induit xt en calculant F̂t(Rt)(xt−1, ξt). On peut ainsi obtenir une infinité
de politiques différentes qui dépendent des approximations faites. En particulier, la politique
optimale du problème est obtenue à partir des vraies fonctions de Bellman Vt: F̂t(Vt)(xt, ξ).

1.3.3 Algorithmes de Programmation Dynamique

Dans cette section, nous présentons formellement deux algorithmes qui reposent sur les principes
de PD pour résoudre les problèmes stochastiques multiétapes: Stochastic Dynamic Programming
(SDP) et Stochastic Dual Dynamic Programming (SDDP). Ces algorithmes sont détaillés dans
les Chapitres (3) et (5).

Tout d’abord, SDP est un algorithme flexible qui requiert peu d’hypothèses sur la structure du
problème et ainsi permet de résoudre une large classe de problèmes (dont des problèmes non
linéaires et avec variables entières). Le principe de l’algorithme (décrit dans Algorithm 1) est
de calculer chaque fonction de Bellman récursivement, en commençant par l’étape finale T , où
VT ≡ K (on suppose K = 0 par simplicité). Alors, en utilisant les opérateurs de Bellman (1.12),
on calcule V̂T−1(x, ξ) = B̂t(VT )(x, ξ) pour chaque état possible x et aléa ξ ∈ supp(ξT−1). Pour
calculer V̂T−1(x, ξ), on a besoin de la valeur VT (y) pour chaque état sortant potentiel y. Cela
nécessite de discrétiser l’espace des états et de faire une interpolation sur ces valeurs pour avoir
une définition approximée de VT (y) pour n’importe quel y. Une fois qu’on a obtenu VT−1(y), on
itère le procédé pour calculer VT−2(y), et ainsi de suite.
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Algorithm 1: Stochastic Dynamic Programming

Data: Paramètres du problème, grille de discrétisation X, interpolateur
Result: stratégie et valeur optimale;

1 VT ≡ 0 ; Vt ≡ 0;
2 for t : T − 1→ 0 do
3 for x ∈ Xt−1 do
4 Vt(x) = Bt(Vt+1)(x); // Résoudre |supp(ξt)| Problèmes (1.12)

5 Étendre la définition de Vt à partir de Xt−1 to Xt−1 par interpolation.

Pour résoudre le Problème (1.8) avec SDP, il faut résoudre
∏T
t=1 |Xt|.|supp(ξt)| problèmes

d’optimisation, ce qui dépasse rapidement les capacités de calcul des ordinateurs. Par exemple,
dans un problème de production avec J produits, si on discrétise les niveaux de stock (resp. les
aléas) avec seulement 10 (resp. 5) valeurs, SDP résout T × 5× 10J problèmes d’optimisation. En
pratique, SDP peut être implémenté tant que la dimension de l’état ne dépasse pas 5. De plus, si
on discrétise l’espace d’état et qu’on calcule les fonctions de Bellman par interpolation, il est
difficile de préserver des bornes et des guaranties de convergence.

Algorithm 2: Stochastic Dual Dynamic Programming

1 V 0
t ≡ −∞ pour t ∈ [T ], ;

2 for k ∈ N do
/* Phase avant: calcul d’une trajectoire */

3 Fixer xk0 = xinit;
4 for t = 1→ T − 1 do
5 Tirer aléatoirement ξkt ∈ supp(ξt) ;

6 xkt = Ft(V k−1
t+1 )(xkt−1, ξ

k
t ) ;

/* Phase arrière: amélioration des approximations */

7 Fixer V k
T ≡ 0;

8 for t = T − 1→ 1 do
9 for ξ ∈ Ξt do

10 Résoudre Ḃt(V k
t+1)(xkt−1, ξ) pour α̇ξ and β̇ξ;

11 Calculer αkt :=
∑

ξ∈Ξt
pξα̇

k
t,ξ and, βkt :=

∑
ξ∈Ξt

pξβ̇
k
t,ξ;

12 Mettre à jour V k
t := max

(
V k−1
t , 〈αkt , ·〉+ βkt

)
;

Alternativement, SDDP nécessite plus d’hypothèses sur la structure du problème que SDP mais
permet de résoudre des problèmes de dimension bien plus grande que SDP. Si on suppose que les
sous-problèmes (1.10) sont convexes, V[T ] peut être approximé par des coupes linéaires calculées
à l’aide de la théorie de la dualité. Le point central de SDDP est d’affiner itérativement une
sous-approximation de chaque fonction de Bellman Vt au “bon endroit”. Plus précisément,
une itération de SDDP consiste en deux phases (voir Algorithm 2): une phase avant, dans
laquelle on calcule une trajectoire xk[T ] localement optimale à l’aide des opérateurs avant (1.13)

en fonction de l’approximation courante V k−1
[T ] dont on dispose ; puis une phase arrière où ces

approximations V k−1
[T ] sont améliorées par l’ajout de nouvelles coupes calculées en xk[T ]. Par

convexité, ces coupes donnent de l’information sur l’ensemble de l’espace d’état, pas juste dans
un voisinage de xk[T ]. Enfin, il faut noter que, pour une discrétisation donnée Xt, SDP tourne



1.4. CONTRIBUTIONS 29

pendant un laps temps donné : on ne dispose d’aucune information intermédiaire si l’algorithme
est stoppée prématurément et donner du temps supplémentaire n’assure pas l’obtention de
meilleurs résultats. En opposition, SDDP affine progressivement les approximations des fonctions
de Bellman. Ainsi, si on stoppe l’algorithme entre deux itérations, on a une borne inférieure
valide et une politique induite du problème initial : plus l’algorithme tourne longtemps, meilleure
est cette borne inférieure.

SDP SDDP

Hypothèse d’indépendance Oui , Oui ,
Support fini des bruits Oui , Oui ,
Hypothèses structurelles Non - Oui ,
Contrôles discrets Oui - Non ,
Discrétisation de l’état Oui , Non -
Résultats intermédiaires Non , Oui -
Dimension de l’état maximale ≈ 5 , ≈ 30 -

Table 1.1: Résumé des hypothèses et limites de calcul de SDP et SDDP

SDDP est utilisé en pratique pour résoudre des problèmes réels complexes. Par exemple, le
système hydraulique du Brésil est opéré à l’aide de SDDP. Toutefois, SDDP n’est pas adapté à
la résolution de PSMLB : avec les variables binaires on perd la convexité du problème. Un axe
de recherche principal de cette thèse est d’explorer différentes façons de résoudre les MSbLP.
Enfin, on résume dans la Table 1.1 les principales hypothèses et réflexions sur les performances
computationnelles de SDP et SDDP.

1.4 Contributions

Cette section résume les principales contributions et résultats de cette thèse.

Contribution 1 (Problème couplé de plannification de la production et d’énergie). On propose
un modèle pour le problème de plannification couplée de production et d’approvisionnement en
énergie comme un PSMLB. Ce modèle prend en compte les incertitudes liées au problèmes, les
contraintes techniques liées à la production (en particulier des contraintes de ressources partagées)
modélisées avec des variables binaires, et des variables d’investissement comme les achats sur le
marché day-ahead. Pour résoudre ce problème, on développe une heuristique qui construit une
politique en résolvant des problèmes stochastiques à t−étapes où la fonction de coût finale est
donnée par l’approximation des fonctions de Bellman obtenue avec SDDP.

Dans la Section 1.1, nous avons souligné le besoin croissant de résoudre des problèmes industriels
en tenant compte de la consommation énergétique induite et de son approvisionnement. Cela a
motivé le projet présenté dans le Chapter 3, qui a abouti à une publication dans Energy Systems
[FLG24]. Dans le Chapter 3, après avoir discuté plusieurs stratégies de résolution pour les
PSMLB à partir de méthodologies connues (comme Model Predictive Control (MPC), Stochastic
Dynamic Programming (SDP) et SDDP), nous proposons des méthodes heuristiques utilisant les
approximations des fonctions de Bellman fournies par SDDP. Plus précisément, nous proposons
une variante des opérateurs avant (1.13), qui, au lieu de résoudre un problème 1−étape à τ avec
les approximations Rτ+1, résout un problème à t−étapes avec les approximations Rτ+t. Pour
ces approximations R, on utilise les coupes calculées par SDDP, obtenues au préalable en un
temps raisonnable.

En testant ces différentes méthodologie sur un cas client de METRON, nous avons constaté que la
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méthode la plus efficace pour résoudre le problème opérationnel (sans variables d’investissement)
est MPC. On peut en conclure que dans ce contexte spécifique, le traitement des variables
binaires s’avère plus crucial que la gestion des incertitudes. Cependant, avec l’ajout de variables
stratégiques, il semble pertinent d’utiliser SDDP pour fixer les variables de première étape (qui
impactent fortement les coûts opérationnels), puis d’appliquer MPC pour résoudre le problème
opérationnel ainsi paramétré.

Contribution 2 (B&B pour résoudre les PSMLBs). Nous proposons une procédure de Branch-
and-Bound (BB) exploitant la structure sous-jacente des arbres de scénarios pour résoudre les
PSMLB, en s’appuyant sur les approximations relachées des fonctions de Bellman obtenues
via SDDP. Nous développons un algorithme de résolution exacte, Algorithm 12, qui utilise des
stratégies de branchement pour faire pousser un sous-arbre de l’arbre de scénarios.

Le Chapter 4 se concentre sur l’élaboration d’un cadre abstrait pour aborder les PSMLB à
l’aide d’une méthodologie de type BB. Nous commençons par définir formellement les arbres
de scénarios et introduisons différentes structures de sous-arbres. Ensuite, nous présentons les
fonctions d’assignation, qui fixent, conservent ou relachent les variables binaires, modifiant ainsi
l’ensemble des solutions admissibles de notre problème. Ces fonctions d’assignation constituent
l’objet fondamental sur lequel s’applique la méthode BB. Nous discutons ensuite des conditions
sur les fonctions d’assignation permettant de tirer parti de SDDP pour résoudre certaines parties
du problème. Ces conditions conduisent à un algorithme BB efficace, décrit dans l’Algorithm 12.

Plus spécifiquement, en considérant des sous-arbres particuliers obtenus en élagant des branches
de l’arbre de scénarios, nous construisons une relaxation partielle du Problème (1.8) oùl’intégralité
est relâchée sur les portions élaguées. À partir d’un sous-arbre vide, l’Algorithm 12 fait pousser
itérativement un sous-arbre en utilisant des méthodes de BB et converge vers la valeur exacte du
Problème (1.8). Nous présentons plusieurs approches pour faire pousser un sous-arbre efficacement
(couche par couche, aléatoirement, en évaluant l’écart à l’intégralité ou par strong-branching).
Cette méthodologie généralise en particulier l’approche heuristique proposée en Contribution 1.

Contribution 3 (Modéliser l’équité). Nous proposons un cadre et des outils pour intégrer l’équité
dans des modèles mathématiques, en particulier dans le contexte de l’agrégation de prosumers.
Notre approche repose sur le concept de fairness-by-design, où nous établissons un degré d’équité
directement dans le modèle, plutôt que de recourir à des redistributions postérieures, comme
en théorie des jeux. Plus précisément, nous suggérons de prendre en compte l’équité de deux
manières : i) en choisissant la manière d’agréger les coûts des agents, ii) en imposant des
contraintes d’acceptabilité qui garantissent que chaque agent tire un bénéfice de sa participation à
la coalition par rapport à une situation individuelle. Nous discutons également des extensions
aux cas dynamiques et stochastiques.

Comme discuté en Section 1.2.4, il peut être nécessaire d’agréger plusieurs usines aux intérêts
divergents, ce qui soulève la question de comment garantir un traitement équitable entre elles.
Avant toute chose, nous donnons dans le Chapter 6 une perspéctive globale sur le concept
d’équité, qui parâıt intuitif mais pose des difficultés en modélisation. A partir d’une discussion
conceptuelle, nous présentons différentes définitions de l’équité et leur traduction en modèles
mathématiques, en soulignant l’importance de la modélisation et de l’analyse contextuelles pour
choisir une approche appropriée.

Puis, dans le Chapter 7, nous élaborons un cadre de modélisation fairness-by-design destiné aux
agrégateurs d’énergie. Plus précisément, nous présentons des opérateurs d’agrégation permettant
de concilier l’efficacité (optimisation des coûts) et l’équité (équité des allocations) via la fonction
objectif. Nous introduisons également des contraintes d’acceptabilité pour garantir que chaque
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agent a un intérêt à participer à l’agrégation, en s’assurant que son coût au sein de l’agrégation
est inférieur à son coût individuel.

Cependant, dans un contexte dynamique et/ou stochastique, le coût n’est plus une valeur unique
mais un vecteur. Ainsi, la comparaison des coûts est effectuée selon un certain ordre. Nous
analysons différentes options pour le cadre dynamique (long terme) – afin de s’assurer qu’un
agent n’a pas intérêt à quitter l’agrégation avant la fin – et pour le cadre stochastique, en utilisant
la théorie des ordres stochastiques.

Ce projet a conduit à un préprint [FLP24], actuellement en cours de révision dans Computational
Management Science.
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2.1 Energy awareness in industrial groups

This PhD is done in collaboration by METRON, a French CleanTech expert in energy performance.
METRON helps industrial and tertiary groups to optimize energy consumption and reduce carbon
emissions. The motivation behind this thesis is to accompany industrial groups through microgrid
investments.

2.1.1 METRON: a French CleanTech company

METRON1 was founded in 2013 and aims to digitally transform energy systems to support
global decarbonization efforts. The company offers a comprehensive digital platform designed
to visualize, monitor, optimize, and model energy performance strategies and decarbonization
roadmaps using data analytics and artificial intelligence.

1https://www.metron.energy/
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The main functionalities of the platform, illustrated in Figure 2.12, include data acquisition
management for high-quality, secure data collection, and energy performance monitoring for
visualizing, measuring, and benchmarking energy consumption. The platform also offers advanced
analytics to optimize energy use and detect inefficiencies. Additionally, it tracks carbon impact
and provides real-time energy cost management, helping organizations forecast budgets and
manage sustainability strategies.

Figure 2.1: Functionalities of Metron’s platform

This thesis is part of METRON’s energy optimization projects. More specifically, the research
examines the impact of microgrid investments on industrial groups. Key aspects under consid-
eration include the operational challenges of managing a microgrid, its influence on existing
production practices, and the implications for access to energy markets.

2.1.2 The stakes of investing in microgrids for industrial groups

Global warming is a pressing issue that significantly impacts the resilience of energy systems,
leading us to question our approach to energy consumption. To achieve the goal of limiting
temperature rise to below 2°C set in the 2016 Paris Agreement [COP16], we have to move towards
more sustainable energy sources. Despite notable progress, with renewable energy reaching
14.6% of global primary energy consumption and contributing nearly 30% of global electricity
generation in 2023 (see [Ins24]), much remains to be done.

A surge in investments is directed at clean energy technologies, such as renewables and energy
storage. According to the IEA’s annual report [IEA24], clean energy investments are projected
to account for two-thirds of total energy investments in 2024. Solar photovoltaic (PV) technology
leads these investments, surpassing all other electricity generation technologies. However, the
intermittency of renewable energy calls for integration with energy storage and upgrades to grid
infrastructure.

The industrial sector in particular must adapt by reducing carbon emissions and mitigating

2https://www.metron.energy/solution/

https://www.metron.energy/solution/
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risks from centralized energy dependence. Key strategies include investing in renewable energy
alongside energy storage systems, such as microgrids. Refer to [Sus17] for implemented examples.
According to the US Department of Energy, microgrids are defined as “a group of interconnected
loads and distributed energy resources within clearly defined electrical boundaries that acts as
a single controllable entity with respect to the grid.” Microgrids provide increased reliability,
especially during energy shortages, as they can operate independently from the main grid.
However, they also introduce operational complexities. Meanwhile, improving energy efficiency
through advanced technologies or updated production practices is equally crucial.

Balancing environmental goals with economic viability is a significant challenge. Technologies
like microgrids, though promising, can be prohibitively expensive without government support.
For instance, an economic evaluation of renewable energy microgrids ([Wan+20]) underscores
the need for more effective policies to encourage investment. Simultaneously, there is increasing
pressure to reduce carbon emissions, with measures such as carbon taxes. For example, the EU’s
Carbon Border Adjustment Mechanism (CBAM) seeks to address this by taxing imported goods
based on their carbon footprint.

Industrial companies would benefit from affordable solutions and expert guidance in navigating
energy management and optimization challenges. Despite the critical need for energy efficiency,
many industrial groups are not fully digitized and remain unaware of the available optimization
and data science tools. This thesis aims to improve our understanding of how microgrids can be
integrated into industrial settings and to explore strategies for optimizing their use.

Having examined how the industrial sector can adapt its energy consumption to align with envi-
ronmental goals, we now discuss the necessary adaptation of the energy market to accommodate
decentralized energy production.

2.1.3 Towards a consumer-centered energy market model

To enhance understanding, we begin by providing a brief overview of the electric power industry
and refer to [KS04] for more details. A power system connects production and consumption
means for electricity, involving various actors: grid operators (transmission system operators
and distribution companies), energy producers, retailers (who purchase energy on the wholesale
market), consumers (who must buy from retailers or can access the wholesale market depending
on their size), regulators and market operators.

For over a century, from the late 19th century to the 1980s, the electricity market functioned as
a vertically integrated and heavily regulated system, meaning they oversaw energy generation,
transmission and distribution to end-consumers. Consequently, consumers had no alternative
but to purchase electricity from the local monopoly supplier. Starting in the 1980s, deregulation
began to reshape the industry, leading to the emergence of various market organizations.

Nowadays, we categorize energy markets into three main types: the capacity market, which
ensures sufficient generation capacity; the energy market, responsible for optimal scheduling and
exchanges; and the ancillary service market, which supports power system operations. Our focus
is on the energy market, which interacts with energy actors on various timelines (see Figure 2.2).
The futures market involves long-term contracts for price hedging and risk management; the
day-ahead (or spot) market trades energy for the next day; the intraday market allows for
adjustments by trading up to an hour before production; and the balancing market ensures
real-time system balance. More specifically, reserve contracts are activated in the balancing
market to maintain system stability and participants compromising power balance are penalized.
In this thesis, we concentrate on the day-ahead and balancing markets.
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Figure 2.2: Illustration of the energy market timeline, excluding the futures market where
contracts are established months or years in advance.

However, deregulated markets remain centralized in certain aspects, limiting small-end consumers
from directly trading energy. With the rise of prosumers (both consumers and producers), some
markets are gradually shifting toward a more decentralized model, where prosumers play a more
active role. A decentralized energy market integrating smart prosumers must be designed to
handle the complexity of diverse services and actors that can change roles. Several market designs
addressing these challenges are discussed by Parag and Sovacool [PS16].

In particular, some prosumers may wish to form a community and collaborate, a process that can
be facilitated by small or medium-scale companies acting as aggregators. In such case, aggregators
are responsible for ensuring efficient operation, optimizing energy flows, and maintaining fairness
in the distribution of benefits among participants. Incorporating fairness into mathematical
models commonly used in these fields poses significant challenges. The inherent subjectivity
of fairness necessitates a thoughtfully crafted approach. This issue is examined thoroughly in
Part III of the thesis.

2.1.4 Operation research as support towards new practices

We now present an overview of Operational Research (OR), despite the absence of an official
definition, as noted by the Association of European Operational Research Societies in their own
presentation [EUR]. We define OR as a discipline that develops and applies analytical methods
to improve decision-making. This definition is intentionally broad, encompassing diverse methods
and applications. OR aims to facilitate the selection and implementation of effective solutions
within complex systems, and has been used intensively in business, industry and government.

OR
Process

1. Formulate
problem

2. Write a
mathematical model

3. Go over
academic literature

4. Implement
an algorithm

5. Assess the
solution obtained

translate reality
into mathematics

study existing
approaches

choose a method

test on real data

Figure 2.3: Operational research methodology
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OR employs a variety of tools, ranging from abstract theories (e.g., graph, complexity, or
polyhedral theory) to practical algorithms (e.g., simplex algorithm for linear programming,
Dijkstra’s algorithm for shortest path or branch-and-bound methodology for mixed integer
programming). We can simplify the OR methodology into a structured five-step process,
illustrated in Figure 2.3. First, a real-world problem is formulated and translated into a
mathematical model. Next, relevant academic literature is reviewed to classify the problem
and explore existing solutions. A suitable method is then selected and adapted if needed for
implementation. The proposed solution is tested and analyzed to determine its effectiveness.
If the solution falls short, the process is revisited, allowing for adjustments to the modeling or
implementation stages to refine assumptions or improve performance until a satisfactory outcome
is reached.

The main challenge lies in striking the right balance between an approximate solution, as models
are always simplified to some extent, and a high-quality solution that is satisfactory for decision-
makers. A notable example of OR application is in solving vehicle routing problems, used by
companies like Renault or SNCF, which optimizes the routes over a fleet of vehicles serving a set
of customers. Another major success is the hydrothermal coordination problem for the Brazilian
power system, solved daily using multistage stochastic optimization algorithms.

2.2 Mathematical models

We present here OR models to discuss the impact of renewable energy investments on industrial
problems. We start with production problems, underlying the need for binary variables to
represent various technical constraints. Then, with in mind the potential investments of industrials
in microgrids, we present energy procurement problems, which are inherently stochastic due to
the presence of renewable energies, and where the focus is to optimize an energy system. This
leads to a challenging model that integrates production scheduling and energy procurement. We
conclude the section by discussing the modeling challenges of aggregating multiple entities for
collective benefits.

2.2.1 Production problems: the need of binary variables

Optimizing inventory management and scheduling operations presents significant challenges in a
production environment. This section presents a generic scheduling model, with some examples
of specific constraints that may be encountered.

Consider a factory with I machines and J products that can be stored in warehouses with limited
capacity. Our goal is to compute a detailed production plan for this factory for a given horizon
(a day, a week, etc.). Concretely, we decompose the horizon into time slots (typically 15 minutes
or an hour) that we call stages t ∈ [T ], T being the total number of stages. At each stage,
the production plan indicates what, and in which quantities, to produce or store in order to
satisfy demand (incoming orders). Our objective is to minimize the factory costs, which include
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production and inventory costs. We formulate the following model

Min
u,b,s

T∑
t=1

f ijt (uijt , b
ij
t , s

j
t ) (2.1a)

s.t. sjt = sjt−1 +
∑
i

uijt − d
j
t ∀t, j (2.1b)

sj ≤ sjt ≤ sj ∀t, j (2.1c)

uij bijt ≤ u
ij
t ≤ uij b

ij
t ∀t, i, j (2.1d)

{uijt }i,j ∈ Ut ∀t (2.1e)

{bijt }i,j ∈ Bt ∩ {0, 1}I×J ∀t, (2.1f)

where uijt represents the quantity of product j produced on machine i at time t, bijt is a binary
variable that equals 1 if uijt > 0 and 0 otherwise, and sjt models the quantity of product j that
can be stored in a warehouse at time t. The objective (2.1a) aims to minimize the aggregated cost
over all stages, where f ijt is a function of variables uijt , b

ij
t , and sjt that models their associated

costs. For tractability purposes, f is usually a linear or convex approximation of the real cost
function. The constraints (2.1b) describe classical stock dynamics, where the previous stock level
determines the level of stock at time t, adjusted for production and demand. Further, the stock
is capacitated (2.1c). When a machine i is turned on to produce product j, the production must
fall between bounds uij and uij . If no production occurs, the output is naturally zero. Binary
variables are essential to model this discontinuity in production bounds (2.1d). Specifically, if
bijt = 0, meaning we do not produce, then 0 ≤ uijt ≤ 0; otherwise, uijt ≤ uijt ≤ uijt . Finally, we
represent the constraints imposed by production processes and machinery through feasibility
sets Ut (2.1e) and Bt (2.1f).

In production problems, binary variables are a convenient tool to model physical machinery
constraints (see constraints (2.1d)), as seen in the following examples. Typically, a machine i
can produce a single product at any given time, which can be modeled as:

bijt = 1 =⇒ bij
′

t = 0 ∀j′ 6= j,

which translates to the inequality to be included in Bt,∑
j

bijt ≤ 1. (2.2)

Another example is shared resources or incompatibility constraints, which indicate that two prod-
ucts j and j′ cannot be produced simultaneously. Such constraints often arise from operational
preferences or staffing limitations. To model incompatibility between products j and j′, we use
the inequality

max
i
bijt + max

i
bij
′

t ≤ 1. (2.3)

Here, maxi b
ij
t equals 0 if product j is not produced at stage t and 1 if it is. Consequently, this

constraint ensures that either product j or j′ can be produced at stage t, but not both.

We designate sjt as a state variable, representing the factory’s state at a given time t and resulting
from previous decisions. Without further specification of the scheduling problem, the only state
variables are the stock levels of each product. However, additional constraints related to the
factory’s processes could require additional state variables. For example, for maintenance reasons,
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some machines should not be turned on more than Li times over the entire problem duration,
from t = 1 to T . Those counter constraints introduce a new state variable cit that counts the
number of times machine i has been activated up to stage t. They can be modeled with the
following equations

cit = cit−1 + 1∑
j b
ij
t −

∑
j b
ij
t−1=1

∀t, i (2.4a)

0 ≤ cit ≤ Li ∀t, i. (2.4b)

Here,
∑

j b
ij
t equals 1 if machine i is turned on at stage t (where the sum cannot exceed 1, see

(2.2)), and 0 otherwise. Thus, the count cit equals the previous count cit−1 plus 1 if the machine
is turned on at stage t, amounting to dynamics (2.4a). Finally, we ensure that the turning-on
limit for machine i is not exceeded by applying constraint (2.4b).

Alternatively, to prevent excessive wear, it may be required that once a machine i is turned
on (resp. off), it remains operational (resp. shut down) for a certain number of consecutive
stages. For minimum uptime/downtime constraints, we need additional binary variables: upit
(resp. downit) equals 1 if we turn on (resp. down) machine i at stage t, and 0 otherwise. Finally,
we can model those new requirements with

upit − downit =
∑
j

bijt −
∑
j

bijt−1 ∀t, i (2.5a)

upit + downit ≤ 1 ∀t, i (2.5b)

t∑
τ=t−M i

upit ≤
∑
j

bijt ∀t > M i, i (2.5c)

t∑
τ=t−mi

downit ≤ 1−
∑
j

bijt ∀t > mi, i, (2.5d)

where equations (2.5a) and (2.5b) ensure that upit and downit have the correct values. Specifically,
if machine i is activated at stage t, then upit − downit = 1, and since downit is binary, it follows
that upit = 1. Similarly, if machine i is deactivated at stage t, we must have downit = 1. When
machine i remains either on or off at stage t, upit − downit = 0, and constraint (2.5b) ensures
that both upit and downit are equal to 0. Then, to describe the state of the system at stage t,
we need the starting (resp. shutting down) information of the M i (resp. mi) previous stages
i.e., {upτ}τ∈[t−M i,t] and {downτ}τ∈[t−mi,t]. Once again, we see the critical role of binary variables
in modeling crucial constraints in production problems.

If the problem is linear, it is classified as a Mixed-Integer Linear Program (MILP), which can be
efficiently solved with a solver such as Gurobi or HiGHS, as long as it is reasonably sized. On
the other hand, if binary variables make the problem too difficult to solve, one might consider
relaxing them. However, repairing a non-binary solution might prove difficult.

Production generates an energy demand, typically met by purchasing energy from a supplier.
However, if an industrial group invests in a microgrid i.e., its own energy generation and storage,
it must manage microgrid operations. In the following section, we introduce a model for energy
procurement, where the production side is simplified to a single energy demand parameter.

2.2.2 Energy procurement problem: the need of considering uncertainty

In energy problems, many parameters are uncertain, especially if we consider renewable energy
generation, which is inherently unpredictable. While part of their output, like solar power following
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day-night cycles, can be forecast, some parts remain unpredictable. Even with improved weather
prediction models, gaps exist between predicted and actual energy generation. Additionally,
energy markets are highly volatile and influenced by multiple factors, making them difficult to
predict. Energy demand can be unpredictable as well, with unexpected factory shutdowns or
outages. These uncertainties affect both the constraints of our energy models (generation units
and demand) and the objective (energy prices), ultimately impacting the quality of the solutions
obtained. To address this, we consider optimization theories that take into account uncertainty
in the decision-making process, allowing for more adaptable solutions.

0 1 2 t t+ 1 T
time

ξ1 ξ2 ξt ξt+1 ξT

Observations

u1(ξ[1]) u2(ξ[2]) ut(ξ[t]) ut+1(ξ[t+1]) uT (ξ[T ])

Decisions

Figure 2.4: Coordination between decisions and the information available across time: at each
stage t, we observe noise realization ξt and make an optimal decision ut(ξ[t]) function of past
information ξ[t] = {ξ1, . . . , ξt}.

We consider a multistage problem, where decisions (either continuous or binary) can sequentially
be made over stages in which uncertainties occur, see Figure 2.4. In this thesis, we always
consider a Hazard-Decision information structure where uncertainties are observed before decision
making at each stage. Alternatively, Decision-Hazard or even more complex structures such
as Hazard-Decision-Hazard frameworks exist. There are different ways to handle uncertainties
in the literature, depending on what is known. For example, if we know the uncertainties are
contained in an uncertainty set, then the robust optimization approach consists of optimizing
the problem against the worst-case. More precisely, it consists in selecting a solution assuming
that the uncertainty realized will be the worst possible for this decision. This thesis focuses on
the stochastic optimization approach, which models uncertainties using random variables with
known distributions.

Although assuming the distributions of energy parameters are known may seem unrealistic, recent
advances in data collection and analysis support this approach. For example, the European
Commission provides a photovoltaic geographical information system3 that allows users to
download hourly irradiation data from 2005 for any location in Europe. Additionally, an online
performance simulator for grid-connected photovoltaic systems is available. Energy prices for
different markets (such as day-ahead and intraday) can also be accessed through the EPEX Spot
website4. Despite the abundance of historical data, predicting these parameters remains difficult.
Nevertheless, advanced forecasting algorithms, including machine learning, enable us to estimate
their probability distributions.

We now consider a microgrid composed of multiple energy generation units g ∈ G and an Energy
Storage System (ESS)– or battery– in which energy can be stored. Renewable units, g ∈ Gre ⊂ G,
such as solar panels and wind turbines, are uncontrollable, as their output depends on external
conditions. In contrast, non-renewable units, g ∈ G \ Gre, like fuel generators, can be controlled
similarly to production machines in Section 2.2.1: they allow adjustable production levels, as
long as physical constraints are satisfied. The microgrid has an energy demand– or load– to

3https://re.jrc.ec.europa.eu/pvg_tools/en/
4https://www.epexspot.com/en

https://re.jrc.ec.europa.eu/pvg_tools/en/
https://www.epexspot.com/en
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satisfy, and it is connected to the main grid, allowing for energy purchases on the Day-Ahead
(DA) and Balancing (B) markets. The energy procurement problem aims to determine how to
operate the microgrid to satisfy energy demand over a horizon of time. More specifically, at each
stage t ∈ [T ], we decide how much energy to produce (through non-renewable units), discharge,
store and purchase from each market. In this problem, the main sources of uncertainties are the
amount of energy the microgrid generates with renewable units, the energy load and the cost
of purchasing energy from the grid. We model those uncertainties (renewable generation and
energy prices) as finite discrete random variables of known probabilities, and obtain a multistage
stochastic linear program:

Min
SOC,q,φ

E
[ T∑

t=1

pDAt qDAt + pBt q
B
t )

]
(2.6a)

s.t
∑
g∈Gre

qgt +
∑

g∈G\Gre

qgt − φ
+
t + φ−t + qDAt + qBt ≤ qload

t ∀t (2.6b)

SOCt = SOCt−1 + ηφ+
t −

1

η
φ−t ∀t (2.6c)

SOC ≤ SOCt ≤ SOC ∀t (2.6d)

(qDAt , qBt ) ∈Mt ∀t (2.6e)

(φ+
t , φ

−
t , (q

g
t )g∈G\Gre) ∈ Et ∀t (2.6f)

σ(ξt) ⊂ σ(ξ1, . . . , ξt−1) ∀t. (2.6g)

At stage t, qDAt (resp. qBt ) represents the energy purchased from the day-ahead (resp. balancing)
market; qgt the energy generated by non-renewable unit g ∈ G \ Gre; φ+

t (resp. φ−t ) the energy
charged (resp. discharged) in the battery; and SOCt the energy stored in the ESS. The uncertain-
ties at stage t are modeled as random variables: pDAt (resp. pBt ) is the random day-ahead (resp.
balancing) price at t; qgt the random generation of renewable unit g ∈ Gre; and qload

t the random
energy load to be satisfies by the microgrid. For simplicity, we regroup the uncertainties at t in
random vector ξt := (pDAt ,pBt , (q

g
t )g∈Gre , q

load
t ). The objective (2.6a) is to minimize the expected

sum of energy purchases from the day-ahead and balancing markets. The main constraint (2.6b)
ensures energy balance: there is enough energy– through production, ESS discharge, or purchases–
to satisfy the energy load. The energy stored in the ESS is bounded (2.6d) and follows classical
stock dynamics (2.6c). Further, the decision variables are subject to feasibility constraints (2.6e)
and (2.6f), that are to be specified. Finally, non-anticipativity constraint (2.6g) models the
information available at stage t: we observe uncertainty at t before making decisions, knowing
the past but not future random realizations (from t + 1 onwards), only of their probability
distributions.

The problem (2.6) is linear, meaning both the constraints and the objective function are linear in
the decision variables; and continuous i.e., all variables are continuous. A standard assumption
in stochastic optimization is that random variables ξ[T ] are stagewise independent i.e., ξt and
ξt′ are independent for all t 6= t′. While this assumption is often unrealistic, it allows for the use
of efficient algorithms based on Dynamic Programming (DP) Principles. In particular, under
stagewise independence assumptions and if the objective is convex, the resulting Multistage
Stochastic Linear Program (MSLP) can be efficiently solved using the cut-generation algorithm
known as Stochastic Dual Dynamic Programming (SDDP).

Having described both the production scheduling and energy procurement problems, we now
aim to merge them. The connection between the two problems can be reduced to the energy
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load, determined by the factory’s production decisions, rather than being modeled as a random
variable. Traditionally solved separately, integrating these two become essential for industrial
groups investing in microgrids. Indeed, joint optimization can significantly reduce costs through
demand-side management and smart microgrid operations. The following section presents a
generic joint production and energy planning model.

2.2.3 A generic model for joint production and energy planning

We now present a framework that considers production scheduling and energy procurement
problems simultaneously. We link Problem (2.1) and Problem (2.6) at each stage t through the
energy load qloadt which is now a function of production decisions u and b. We can model the
problem as a Multistage Stochastic mixed-Integer Linear Program (MSiLP), or more specifically
as a Multistage Stochastic mixed-binary Linear Program (MSbLP) (we only consider binary
variables):

Min
SOC,q,φ,u,b,s

E
[ T∑

t=1

pDAt qDAt + pBt q
B
t + f ijt (uijt , b

ij
t , s

j
t )

]
(2.7a)

s.t
∑
g∈Gre

qgt +
∑

g∈Gnre

qgt − φ
+
t + φ−t + qDAt + qBt ≤ qload

t ∀t (2.7b)

qloadt = gt(u
ij
t , b

ij
t ) ∀t. (2.7c)

(2.1b) to (2.1f)

(2.6b) to (2.6g)

In Problem (2.7), we find variables from Problem (2.1) and Problem (2.6) and their associated
constraints: production constraints (2.1b) - (2.1f) and energy procurement constraints (2.6b) -
(2.6g). The link between both problems is modeled through the energy balance equation (2.7b),
where qloadt is now a function of production variables {uijt , b

ij
t }. More specifically, we consider a

function gt that gives the energy consumption qloadt depending on production decisions in (2.7c).
Again, for tractability purposes, we assume g is linear in production variables. Finally, the
objective is to minimize the sum of production costs(2.1a) and energy costs(2.6a).

A large MSbLP is known to be difficult to solve. Though there exist theoretical algorithms to
find the optimal solution, they are slow to converge and impractical to solve real life problems.
This motivates Part II, where we propose an alternative method.

Remark 3 (State expansion). As in Section 2.2.1, depending on the production constraints,
we can expand the system’s state with additional information. For example, with minimum
uptime/downtime constraints, we also need starting and shutting down variables {upiτ}τ∈[t−M i,t]

and {downiτ}τ∈[t−mi,t] to describe the state of the system at stage t.

2.2.4 Aggregating entities

In the previous section, we introduced a joint production and energy planning problem for a
single factory. In some cases, a single decision-maker has to manage multiple factories and
thus solve different variants of Problems (2.7). This can come from a multi-site company or an
external company aggregating prosumers. In the first case, a company with multiple production
sites will naturally coordinate production and inventory across sites to minimize global costs.
In the second case, aggregation is often motivated by economic benefits. For example, when a
group of prosumers reaches a large enough size, it can access some specific electricity markets,
such as buying energy blocks to be shared among the factories. In this context, it becomes
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advantageous for a single decision maker, with insight into each prosumer’s needs, to optimize
these problems collectively rather than independently. This leads to the resolution of multiple
Problems (2.7) coupled by some joint decision, resulting in a very large stochastic problem, which
further emphasizes the need for efficient algorithms.

In Section 2.2.3, we saw how to merge two problems by constructing a new model that contains
all the variables from each problem and retains most of their (identical) constraints. Some
constraints are adjusted to link the variables (e.g., the energy balance constraint (2.7b) connects
the problem with new variable qload

t ), and new constraints or variables may be added (such as
the energy consumption constraint (2.7c)). This same methodology applies when constructing
the aggregated problem. However, a major difference lies in the objective: in Section 2.2.3, the
goal was to minimize overall costs for a single factory, so when merging the two problems, we
can simply sum their objectives. In the case of an external aggregator, the different prosumers
might have different interests. Therefore, the model must ensure that the aggregator provides
solutions that benefit each factory, incentivizing their participation. Indeed, each factory is
mainly interested in its own cost, not the aggregated one. This introduces a multi-objective
framework where the aggregator must balance minimizing overall costs with ensuring a fair
allocation of benefits among the entities.

Fairness is challenging to model mathematically, as it lacks a clear definition and can evoke
different interpretations. We explore how to define and model fairness in a prosumer aggregation
context in Part III, specifically in multistage stochastic problems.

2.3 Mathematical tool and challenges

In this section, we introduce stochastic optimization, the approach chosen to solve Problem (2.7).
Specifically, we discuss decomposition methods applicable to MSbLP. We start with a generic
formulation of MSbLP, and then outline how to construct a deterministic equivalent for this
problem. Next, we introduce subproblems that enable a Dynamic Programming (DP) approach
based on Bellman’s DP principles. Finally, we present Bellman operators, which allow us to
develop policies– guidelines for optimal here-and-now decisions that incorporate their anticipated
future impact.

2.3.1 Problem formulation

We start by presenting abstract formulations encompassing in particular Problem (2.7). From
now on bold font is used to design random variables. Further we denote [n] = {1, . . . , n} the set
of integers up to n. We consider a multi-stage problem where all the uncertainty is modeled by
a sequence of exogenous random variables ξ[T ], sometimes called noises. We assume that each
noise ξt follows a discrete probability distribution, assumed to be known, in probability space
(Ω,A,P). The decisions are represented either by continuous or binary variables. The resulting
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Multistage Stochastic mixed-binary Linear Program (MSbLP) reads

min
x,y,b

E

[
T∑
t=1

Lt(xt−1,yt, bt, ξt)

]
(2.8a)

xt = Ft(xt−1,yt, bt, ξt) ⊂ Xt ∀t ≥ 1 (2.8b)

yt ∈ Yt(xt−1, ξt) ∀t ≥ 1 (2.8c)

bt ∈ Bt(xt−1, ξt) ∩ {0, 1}nb ∀t ≥ 1 (2.8d)

σ(yt, bt) ⊂ σ(ξ1, . . . , ξt) ∀t ≥ 1 (2.8e)

x0 = xinit. (2.8f)

In Problem (2.8), x[T ] is a sequence of random state variables describing the state of the system,
that follows linear dynamic equations (2.8b), in feasible sets X[T ]. Let nb be the number of binary
variables per stage, we denote yt (resp. bt) the continuous (resp. binary) decision variables
made at stage t, that must satisfy linear constraints represented by Yt(xt−1, ξt) (2.8c) and
Bt(xt−1, ξt) (2.8d). In stochastic optimization, state and decision variables are random variables
and must respect non-anticipativity constraints (2.8e), which control the information available at
stage t: we observe uncertainty at t before making decisions, with no knowledge of future random
realizations (from t+ 1 onward). In particular, this measurability constraint implies that the
states and control variable at stage t are (measurable) functions of the past noises (ξ[t]). Finally,
the objective (2.8a) is to minimize expected aggregated costs. Those costs are decomposed by
stages: the instantaneous cost at stage t is Lt a linear function of the decisions and noise at t as
well as the incoming state xt−1.

Remark 4 (Linearity assumptions). The notations used in Problem (2.8) come from a more
generic framework, where linearity is not necessary for standard DP and convexity is enough for
SDDP algorithms. However, to leverage the efficiency of MILP solvers, we assume in this thesis
that, at each stage, the instantaneous problem is an MILP.

Adapting standard optimization algorithms to models with random variables is not straightforward.
However, if the random variables have discrete support, the problem can be reformulated as an
MILP. To that end, we build a scenario tree that captures all the uncertainty in the problem while
maintaining the information structure. Usually, the scenario tree T is defined as the collection of
all scenarios, where each scenario {ξjtt }t∈[T ] represents one realization of ξ[T ], since the latter
contains “all times”.

An example of a scenario tree with four stages is illustrated in Figure 2.5, where the uncertainty
lies in the weather conditions—- specifically, whether it rains or is sunny at each stage. Starting
from the root node r, the two possible outcomes at stage t = 1 are represented with nodes
ν1, corresponding to sunny weather, and ν2 if it rains. Then, knowing the weather has been
sunny or rainy at t = 1, we have again two possibilities for the second stage, resulting in 4
possible scenarios {νk}k∈[3:6] at t = 2. Note that each layer of the tree corresponds to a stage t
of Problem (2.8). Formally, a layer Nt is the set of nodes in T of depth t, and a(ν) is the parent
of node ν (its predecessor in the tree). For example in Figure 2.5, ν5 is the parent of ν11 and ν12.
In Chapter 4, we provide a rigorous definition of scenario trees using graph theory.
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Figure 2.5: Example of a scenario tree T where there are two possible outcomes per stage: either
the weather is sunny or it is rainy. A scenario is a sequence of what actually happened over the

four stages. For example, a potential scenario is ( , , , ) that corresponds to node ν28.

Leveraging the scenario tree structure, we can reformulate Problem (2.8) as a large deterministic
problem where (deterministic) variables depend on node ν instead of stage t, and the dynam-
ics (2.8b) are between a node ν and its parent a(ν) instead of between stage t and stage t+ 1.
We denote πν the probability of being in node ν which represent scenario ξ[t] i.e., the product of
conditional probabilities on the path linking r to ν in the scenario tree

πν = P(ξt = ξt, a(ν)) = P(ξt = ξt| a(ν) )πa(ν),

with πr = 1. We then obtain a MILP, called the extensive formulation or deterministic equivalent
of Problem (2.8):

min
x,y,b

T∑
t=1

∑
ν∈Nt

πνLt(xa(ν), yν , bν , ξν) (2.9a)

xν = Ft(xa(ν), yν , bν , ξν) ⊂ Xν ∀t ≥ 1,∀ν ∈ Nt (2.9b)

yν ∈ Yν(xa(ν), ξν) ∀t ≥ 1,∀ν ∈ Nt (2.9c)

bν ∈ Bν(xa(ν), ξν) ∩ {0, 1}nb ∀t ≥ 1,∀ν ∈ Nt. (2.9d)

xr = xinit (2.9e)

Problem (2.9) is equivalent to Problem (2.8): the expectation of costs in Equation (2.8a) is
rewritten as a sum, as ξ[T ] are finitely supported; the non-anticipativity constraints (2.8e) are
ensured by the structure of the scenario tree. Recall that all constraints (dynamics Fν and
feasible sets Xν ,Yν ,Bν) as well as the objective functions Lt are linear, thus Problem (2.9) is
indeed an MILP. Even if there are efficient algorithms to solve MILP, the size of the problem is
exponential in the number of stages, making it intractable to solve when T is more than a few
units.

2.3.2 Dynamic Programming and Approximated problems

MSbLP are notoriously challenging to solve, even with approximation techniques. However, with
certain Markovian assumptions, we can decompose them into parameterized subproblems, which
can then be solved using a Dynamic Programming (DP) approach. DP is a decomposition method
that consists in simplifying a complex problem by breaking it down into smaller subproblems,



46 CHAPTER 2. INTRODUCTION

which are then solved to construct a solution for the original problem. Multistage problems are
well-suited to DP, as they naturally allow for a time-decomposition: from a T−stages problem,
we can construct τ−stages subproblems with τ < T .

From now on, we assume that the noises are stage-wise independent, meaning that (ξ1, . . . , ξT )
is a sequence of stochastically independent random variables. Then, if our problem is of the
form (2.8), the Dynamic Programming theory tell us that, at a given stage t, the only information
needed to make optimal decisions now is the system’s current state xt−1 and the noise observed
at t. This allows us to define a sequence of subproblems that depend on an incoming state x:

Vt(x) := min
x[t:T ],y[t:T ],b[t:T ]

E

[
T∑
τ=t

Lτ (xτ−1,yτ , bτ , ξτ )

]
(2.10a)

xτ = Fτ (xτ−1,yτ , bτ , ξτ ) ⊂ Xτ ∀τ ≥ t (2.10b)

yτ ∈ Yτ (xτ−1, ξτ ) ⊂ Rnu ∀τ ≥ t (2.10c)

bτ ∈ Bτ (xτ−1, ξτ ) ∩ {0, 1}nb ∀τ ≥ t (2.10d)

σ(yτ , bτ ) ⊂ σ(ξ1, . . . , ξτ ) ∀τ ≥ t (2.10e)

xt−1 = x. (2.10f)

The functions {Vt}t∈[T ] are called cost-to-go or Bellman’s functions. Vt(x) represents the optimal
cost that can be obtained from now on (here from stage t) if the initial state of the system is x.
We can apply Bellman’s dynamic programming principles and obtain the following recursion:

V̂t(x, ξ) = min
y,y,b

Lt(x, y, b, ξ) + Vt+1(z) (2.11a)

z = Ft(x, y, b, ξ) ⊂ Xt (2.11b)

y ∈ Yt(x, ξ) (2.11c)

b ∈ Bt(x, ξ) ∩ {0, 1}nb (2.11d)

Vt(x) = E [ V̂t(x, ξt) ]. (2.11e)

Then, we see that recursively, by computing all cost-to-go functions, we obtain V1(xinit), the
value of Problem (2.8). In practice, those functions are hard to compute, and most times can only
be approximated. Indeed, if the state of the system is continuous, there are few cases where we
can get an explicit expression for Vt(x). To obtain an approximation of Vt(x), we first compute
the value Vt(x

i) for a finite set of points {xi}i∈[I] in the state space; then we get Vt(x) for any x
by interpolation on the values of the cost-to-go function {Vt(xi)}i∈[I].

To account for all possible approximations R of cost-to-go functions, we introduce Bellman’s
backward operator that estimate cost-to-go at stage t from cost-to-go at stage t+ 1, i.e.,

B̂t(R)(x, ξ) = min
z,y,b

Lt(x, y, b, ξ) +R(z) (2.12a)

z = Ft(x, y, b, ξ) ⊂ Xt (2.12b)

y ∈ Yt(x, ξ) (2.12c)

b ∈ Bt(x, ξ) ∩ {0, 1}nb (2.12d)

Bt(R)(x) = E [ B̂t(R)(x, ξ) ]. (2.12e)

Conversely, we define forward operators, that determine the decision to make at stage t, given
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the current state, noise realization and a future cost-to-go approximation:

F̂t(R)(x, ξ) ∈ arg min
z,y,b

Lt(x, y, b, ξ) +R(z) (2.13a)

z = Ft(x, y, b, ξ) ⊂ Xt (2.13b)

y ∈ Yt(x, ξ) (2.13c)

b ∈ Bt(x, ξ) ∩ {0, 1}nb . (2.13d)

Forward operators yield the induced policy of a sequence of approximated cost-to-go functions
{Rt}t∈[T ], where a policy is a decision rule that provides the best here-and-now decisions xt with
estimated cost-to-go Rt. In practice, at a given stage with current state xt−1, we observe the
realization of noise ξt, and we obtain the local optimal decisions to make and the new state xt of
the system by computing F̂t(Rt)(xt−1, ξt). Then, we can obtain an infinite number of policies,
depending on the approximations made. In particular, the optimal policy is obtained with the
true cost-to-go functions Vt: F̂t(Vt)(xt, ξ).

2.3.3 Dynamic Programming Algorithms

We now briefly present two algorithms relying on DP principles that solve stochastic multistage
programs: Stochastic Dynamic Programming (SDP) and Stochastic Dual Dynamic Programming
(SDDP). We elaborate on both algorithms in Chapters 3 and 5.

First, SDP is a flexible algorithm that needs few structural assumptions and solves a large class of
problems, including mixed-integer or non-linear ones. The algorithm’s core idea (see Algorithm 3)
is to compute all cost-to-go functions recursively, starting from the final stage T , where VT ≡ K
(we assume with K = 0 here for simplicity). Then, using Bellman’s operators (2.12), we compute
V̂T−1(x, ξ) = B̂t(VT )(x, ξ) for each state x and noise realization ξ ∈ supp(ξT−1). Note that to
compute V̂T−1(x, ξ), we need the value VT (y) for all potential outgoing state y. This requires
discretizing the state space and interpolating points to derive VT (y) for any given y. Once we
have VT−1(y), we repeat the process to compute VT−2(y), and so forth.

Algorithm 3: Stochastic Dynamic Programming

Data: Problem parameters, discretization grid X, interpolator
Result: optimal strategy and value;

1 VT ≡ 0 ; Vt ≡ 0;
2 for t : T − 1→ 0 do
3 for x ∈ Xt−1 do
4 Vt(x) = Bt(Vt+1)(x); // Solve |supp(ξt)| problems (2.12)

5 Extend the definition of Vt from the grid Xt−1 to Xt−1 by interpolation.

To solve Problem (2.8) using SDP, we have to solve
∏T
t=1 |Xt|.|supp(ξt)| optimization problems.

This quickly becomes computationally intractable as the number of iterations grows exponentially
with the state dimension. For example, in a production problem with J products, if we discretize
each stock level (resp. noises) with only 10 (resp. 5) values, SDP solves T × 5× 10J optimization
problems. In practice, SDP can generally be considered for state dimensions up to 5. Further, as
we need to discretize the state space and then interpolate the value function, it is challenging to
maintain provable bounds and convergence guarantees.

In contrast, SDDP requires more structural assumptions than SDP but pushes beyond SDP’s
computational limits. Assuming the subproblems (2.10) are convex, V[T ] can be approximated
with linear cuts computed using duality theory. The crux of SDDP is to iteratively refine lower
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bounds of each value function Vt at the “right places”. More precisely, an SDDP iteration has two
phases (see Algorithm 4): a forward phase, in which a system trajectory xk[T ] is sampled, using

forward operators (2.13) based on the current cost-to-go approximations V k−1
[T ] ; and a backward

phase where these cost-to-go approximations V k−1
[T ] are improved with new cuts computed at xk[T ].

By convexity, these cuts give information everywhere, not just around xk[T ].

Finally, note that, for given discretization grids Xt, SDP run for a fixed amount of time: we have
no information if we stop early, and giving more time does not provide better results. On the
other hand, SDDP progressively refine the cost-to-go approximations. Thus, whenever we stop
the algorithm (between iterations), we have a valid lower bound and an induced policy. Giving
more computation time provide a better lower bound.

Algorithm 4: Stochastic Dyal Dynamic Programming

1 V 0
t ≡ −∞ for t ∈ [T ], ;

2 for k ∈ N do
/* Forward phase: compute trajectory */

3 Set xk0 = xinit;
4 for t = 1→ T − 1 do
5 Randomly draw ξkt ∈ supp(ξt) ;

6 xkt = Ft(V k−1
t+1 )(xkt−1, ξ

k
t ) ;

/* Backward phase: update approximations */

7 Set V kT ≡ 0;
8 for t = T − 1→ 1 do
9 for ξ ∈ Ξt do

10 Solve Ḃt(V kt+1)(xkt−1, ξ) for α̇ξ and β̇ξ;

11 Compute αkt :=
∑
ξ∈Ξt

pξα̇
k
t,ξ and, βkt :=

∑
ξ∈Ξt

pξβ̇
k
t,ξ;

12 Update V kt := max
(
V k−1
t , 〈αkt , ·〉+ βkt

)
;

SDDP is widely used to tackle real and large-scale industrial problems. For instance, it is
implemented to manage the hydraulic system in Brazil. However, its convexity requirement
disqualifies it from solving MSbLP, as convexity is lost with binary variables. The main purpose
of this thesis is to explore new algorithms to solve MSbLP. Finally, we summarize in Table 2.1
the key assumptions and insights on computational performance are summarized of SDP and
SDDP.

DP SDDP
Independence assumption Yes , Yes ,
Finitely supported noise Yes , Yes ,
Structural assumptions No - Yes ,
Discrete control Yes - No ,
State discretization Yes , No -
Progressive results No , Yes -
Maximum state dimension ≈ 5 , ≈ 30 -

Table 2.1: Summary of SDP and SDDP’s assumptions and computational limits
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2.4 Contributions

This section gives an overview of the main contributions and results of this thesis, along with its
layout.

Contribution 4 (Joint production and energy planning problem). We model a joint production
and energy planning problem as an MSbLP. This model accounts for uncertainties, industrial
constraints (in particular shared-resource constraints) modeled with binary variables, and “in-
vestment” variables, such as day-ahead purchases. We provide a heuristic method to solve an
MSbLP that constructs a policy by solving t−multistage stochastic programs with final cost-to-go
functions being approximated by SDDP cuts.

We emphasized in Section 2.1.2 the rising need to solve industrial problems with an insight
on energy procurement. This motivated the project presented in Chapter 3, which led to
a publication [FLG24] in Energy Systems. In Chapter 3, after discussing multiple solution
strategies to solve MSbLP based on known methodologies (such as Model Predictive Control
(MPC), Stochastic Dynamic Programming (SDP) and SDDP), we propose heuristic methods
that use the approximated cost-to-go functions given by SDDP. More precisely, we propose a
variant of bellman forward operators (2.13), that instead of solving a 1−stage problem at stage
τ with approximations Rτ+1, solves a t−stage problem with approximations Rτ+t. Further, the
cost-to-go approximations that we use are computed by SDDP’s cuts, which we can obtain in a
reasonable time beforehand.

In our tests on a METRON use case, we found that the operational problem (excluding investment
variables) is best solved using MPC. Indeed, in this specific setting, addressing binary variables
is more critical than dealing with uncertainties. However, with the addition of strategic variables,
it seems that we should use SDDP to fix the first stage variables (that impact significantly
operational costs) and then apply MPC to solve the resulting parameterized operational problem.

Contribution 5 (A B&B framework for solving MSbLP). We provide a Branch-and-Bound (BB)
framework that relies on the underlying structure of scenario trees to solve MSbLP, leveraging the
relaxed approximations obtained with SDDP. From this framework, we develop an exact algorithm,
Algorithm 12, to solve MSbLP that relies on branching strategies to grow a subtree of the scenario
tree.

The focus of Chapter 4 is to provide an abstract framework to address MSbLP through BB
methodology. Thus, we start by giving a formal definition of a scenario tree as well as introduce
various subtrees’ structures. Then, we introduce assignation functions, which fix, keep or relax the
binary variables, thus modifying the feasible set of our problem. These assignation functions are
the fundamental object on which we apply BB. We finally discuss conditions on the assignation
functions under which we can leverage SDDP to solve some (part of) the problem. Those
conditions lead us to an efficient BB algorithm described in Algorithm 12.

More specifically, considering particular subtrees that are constructed by pruning branches of the
scenario tree, we construct a partial relaxation of Problem (2.8) by relaxing integrality on the
pruned portions of the scenario tree. Starting from an empty subtree, Algorithm 12 iteratively
grows the subtree with BB methods, and converges to the true value of Problem (2.8). We present
multiple approaches (layer by layer, randomly, through integrality gap or strong branching) to
grow the subtree efficiently. In particular, this framework generalizes the heuristic approach
proposed in Contribution 4.

Contribution 6 (Modeling fairness). We present a framework and tools to accommodate fairness
into mathematical models, in particular in the context of prosumer aggregation. In our framework,
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we advocate for fairness-by-design, where we establish a degree of fairness directly within the
model instead of relying on ex post redistribution, as would be usual in game theory. More
specifically, we suggest to take fairness into account by i) choosing the way in which we aggregate
the agents’ cost, ii) enforcing acceptability constraints which guarantee that each agent is better
off in the coalition than alone. Moreover, we discuss extensions to the dynamic and stochastic
cases.

As discussed in Section 2.2.4, we may need to aggregate multiple factories with diverging interests.
This raises the question of how to guarantee fair treatment among them. We begin, in Chapter 6,
by providing a global perspective on fairness, a concept that seems intuitive but is challenging to
model. From conceptual discussions to practical applications, we present different definitions
of fairness and their translation into mathematical models. We emphasize the importance of
context-specific modeling and analysis when choosing a fairness approach.

From this discussion, we propose in Chapter 7 a fairness-by-design framework that can be used
for energy aggregators. Specifically, we present aggregation operators to balance efficiency (cost
optimization) with fairness (allocation optimization) through the objective function. We further
introduce acceptability constraints to ensure that each agent has an interest in participating in
the aggregation. This is modeled by ensuring that its cost in the aggregation is lower than by
itself. However, in dynamic and/or stochastic settings, the cost is no longer a single value but an
element of a larger vector space. Thus, the comparison between both costs is done according to
some specific ordering. We discuss various options for the (long-term) dynamic setting – to ensure
that an agent has no interest to leave the aggregation before the end; and for the stochastic
setting – using stochastic order theory.

This project led to a preprint [FLP24] and is now under review in Computational Management
Science.
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3.1 Introduction

The latest Intergovernmental Panel on Climate Change (IPCC) warns us yet again about the
consequences of climate change and incites governments, industries and citizens to change
accordingly. The COP27, held in November 2022, set up a clear objective of securing global
net-zero emissions by mid-century. Therefore, the industry, counting for one-fourth of global
emissions (6th IPCC report), must take strong actions to reduce them. In this respect, the Clean
Energy Ministerial Industrial Deep Decarbonisation Initiative (IDDI) calls for a change in the
energy supply, as industries consume fuel massively to produce local energy, especially steel
and cement production. To put things in perspective, renewable generation represented only
16.9% of electricity generation in the industrial sector in 2020, which is far less than its share in
global electricity generation, up to 28% in 2020, according to the International Energy Agency
(IEA), see their Tracking Industry 2021 report [Intc] and their Global Energy Review 2021 report
[Inta]. For instance, microgrids are an alternative energy supply model. They are defined (see
e.g., [HPG18]) as a small-scale power grid that can operate independently or collaboratively with
the power grid. Generally, they are made of Energy Storage System (ESS), renewable energy
generation units (wind turbines, solar panels) and consumption units (factories, buildings, etc.).
With recent technological advances, such energy systems are becoming more efficient and cheaper
to install and operate. Moreover, some governments subsidize energy transition efforts, which
encourages factories to invest in onsite renewable energy. For instance, The Fairfield, California
brewery1 has invested in a solar array and wind turbine which provide an average of 30% of its
electricity needs. Another example is the French company E.Leclerc which equips some of its
hypermarkets with solar generation.

In a recent review of energy sustainability in manufacturing systems [RM21], the authors point
out that, in most papers, the problem of energy management is decoupled from manufacturing
operations. However, they argue that this decoupling is not realistic as the two problems are
interdependent, and suggest that research should be conducted on solving those problems jointly.
In this paper, we address this issue by proposing a joint production and energy supply planning
problem.

Unfortunately, incorporating renewable energies in the supply mix is challenging as they are
intermittent, unpredictable and uncontrollable. To counteract these defects it is often suggested
to add an ESS (we refer to [Geo+21] for an overview of the available ESS). Doing so allows
transferring energy across time steps, making it controllable and compensating for intermittency.
Unpredictability of the renewable production requires going from a deterministic formulation
to a stochastic formulation. Indeed, a classical deterministic problem is often misleading and
optimistic about the potential of the ESS. Unfortunately, multistage stochastic problems are
known to be numerically challenging (see e.g., [Sha06]). Starting from a standard scheduling
industrial problem, we consider relying on an onsite microgrid to provide an alternative energy
supply to the main grid. We obtain a mixed-integer multistage stochastic problem optimizing
jointly the production planning and the energy supply management of an industrial facility with
in advance and intraday energy purchases.

3.1.1 The industrial microgrid management problem

Building renewable energy production and storage management systems to supply an industrial
facility is a complex task. One of the questions at hand is the financial rentability of such a
system, which is not guaranteed. To incite the industry to invest in renewable energies, we need

1https://www.anheuser-busch.com/breweries/fairfield-ca

https://www.anheuser-busch.com/breweries/fairfield-ca
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economic guarantees: see [Intb] and [Intd] for an overview of clean energy transition costs in
2021. The economic viability of a microgrid is based on controlling the investment costs and
managing the microgrid efficiently. In this paper, we do not discuss the investment part but
focus on the operational part.

We consider a facility with I machines that produce up to J types of products that can be stored
(see Figure 3.1a). Our goal is to provide the facility with a joint production and energy supply
planning, on a discrete horizon t ∈ [T ]. The planning should minimize the total expected cost
(economic, environmental and labor) while satisfying production targets and technical constraints.

Machines

i ∈ [I]
Products sjt

j ∈ [J ]

uijt

(a) Factory Structure

Grid

PV

ESS

SOCt

qload
t

qgrid
t

qPV
t

φ−t
φ+
t

(b) Energy exchanges

Figure 3.1: Industrial Management Problem

Depending on the facility at hand, many technical constraints need to be satisfied. We can classify
them into three types. First, physical constraints are induced by the machines at hand. For
example, most machines, such as grinders or plastic extruders, require warming up before being
operational. Another straightforward example comes from the food industry, where machines
need to be cleaned up to reconfigure the production line. Second, process constraints which
correspond to precedence constraints mandating sequential execution of some tasks (usually
called flow-shop problems). For instance, in a chocolate factory, every batch production will
follow in order: cleaning, roasting, shell removing, grinding and conching. Finally, implied
constraints model decision-maker preferences or human resources constraints. For example, the
decision maker may limit the number of re-starts to limit wear-off, if a machine is hard to access
or for human power reasons.

Most of the above constraints are modeled with binary variables. Thus, even though we focus
here on a specific problem, the developed approach can be transposed to a large variety of
problems. In this paper, we consider a problem with bounded production and set-up costs. In
addition, we consider shared resource constraints such that some products cannot be produced
simultaneously. Factory energy needs, proportional to production, are met with electricity from
a main grid or produced onsite by a micro-grid consisting of solar panels coupled with an ESS
see Figure 3.1b.

Electricity from the main grid can be purchased through two different contracts, usually cumulated:
Intra-day contract where prices are fixed annually, the factory pays the energy extracted from
the main grid at a given time t; In-advance contract where the factory buys energy blocks in
advance (e.g., a day ahead of production) at a preferential rate. Decisions are made adjusting
energy purchases based on intra-day rates in real-time.
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3.1.2 Literature review

We consider a problem coupling production planning and energy supply management. Taken
separately, each problem has been widely studied, but considering them simultaneously is less
common, especially when taking into account uncertainty, leading to large multistage stochastic
optimization problem. In this section, we review the state-of-the-art of energy-aware production
planning under uncertainties.

A typical angle for energy-aware production systems is to minimize energy waste, see the reviews
[Bän+21], [BG16] and references therein. This part of the literature looks for production plans,
or scheduling, that are more energy efficient, adapting tools from well-studied problems like single
or parallel machine scheduling, job-shop, flow-shop or lot-sizing 2. However, few papers discuss
the economic impact of integrating renewable energy sources on site: indeed, the industrial
energy supply is traditionally guaranteed by an external grid. In their survey [Bän+21], Bänsch
et al. count 8 articles (out of 192) that consider an onsite energy generation and an ESS. The
literature lacks research on industrial problems with distributed generation systems, though,
they are widely studied on their own. We refer to the review [Alo+22] where Alonso-Travesset
et al. focuses on recent studies on models under uncertainties in distributed generation systems.
They highlight the necessity of properly taking into account uncertainties in those problems,
in particular regarding renewable energy generation. In the problem considered here, the main
source of uncertainty comes from renewable energies. There are two main ways of handling
uncertainty: stochastic optimization and robust optimization.

3.1.2.1 Stochastic optimization for operational management

In the first paradigm, we model uncertain variables as random variables with known distribution,
usually represented by a scenario tree. Further, as uncertainties are revealed step by step,
stochastic problems are often multistage problems that are known to be challenging, while there
exist various methods to tackle 2−stage problems e.g., based on Bender’s decomposition (see
[BL97]). As a result, multistage problems are classically relaxed into 2−stage problems: all
decision variables, except the first stage variable, are assumed to be taken with the full knowledge
of the uncertainty. This is the strategy adopted by Golari, Fan, and Jin in [GFJ16] to optimize
the production planning of interconnected factories each connected to a micro-grid. Biel et al.
take this approach as well in [Bie+18] to solve a flow-shop problem under uncertainties regarding
wind energy generation. In another article ([WMG20]), Wang, Mason, and Gangammanavar
studies a similar problem with multi-objectives (total completion time and energy costs), where
selling an energy excess to the main grid is allowed. They propose an ε-constraint algorithm
integrated with the L-shaped method ([Bir85a]), which is a Benders decomposition adapted
to 2−stage stochastic programs. To avoid 2−stage approximations, one can turn to dynamic
programming reformulations of the multi-stage stochastic problem. However, vanilla dynamic
programming for multistage problems is limited by what is known as the curse of dimensionality.
In 1991, Pereira and Pinto proposed an efficient algorithm to solve those problems: the Stochastic
Dual Dynamic Programming (SDDP) algorithm [PP91]. Since then, SDDP has been widely
applied to energy management problems and variants have been derived (see [FR21] for a recent
survey). We recall the algorithm and present related literature in Section 3.3.2.

2The job-shop problem, see e.g., [Man60], looks for an optimal scheduling plan for n jobs, consisting of operations
with precedence constraints, on m machines. The flow-shop problem is a variant of the job-shop problem with a
strict order of all operations on all jobs. Finally, a lot-sizing problem optimizes the production quantities of each
item at each time step.
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3.1.2.2 Robust optimization for operational management

In the second paradigm, robust optimization, we consider the worst case in possible uncertainty
realizations. This is the choice made by Ruiz Duarte, Fan, and Jin in [RFJ20], where they evaluate
the renewable energy integration with an ESS in a factory while optimizing the production
planning. This is modeled by a 2−stage problem: in the first stage, a production plan is defined
whereas in the second stage, the decisions regarding the energy management system are made to
minimize its energy costs under the worst-case energy generation scenario. The robust uncertainty
set is determined by statistical tools. Bridging both worlds, Shahandeh, Motamed Nasab, and Li
propose in [SML19] to divide random variables into two categories: static and dynamic variables.
The idea is to apply robust optimization on one variable category and then stochastic optimization
on the other, considering a scenario tree. This results in two hybrid algorithms, mixing robust
and stochastic optimization to solve a multistage problem with different uncertainty types.

3.1.2.3 Price and demand uncertainties

Furthermore, in these industrial problems, the solution is not only affected by renewable energies’
variability: costs and demands are other known uncertainty sources. If some articles consider
time-of-use (TOU) electricity rates ([Bie+18], [MP13], [Li+17] and [WMG20]), which are fixed
prices in contract depending on consumption’s times, others consider variable prices. In that
respect, Bohlayer et al. ([Boh+20]) and Ierapetritou et al. ([Ier+02]) both study mixed-integer
multistage stochastic problems under energy prices uncertainty. See also Fazli Khalaf and Wang
([FW18]) who solve a 2−stage stochastic scheduling problem considering both electricity prices
and energy generation as random variables. Finally, in lot-sizing problems, the product demand
is often random: Higle and Kempf consider a multistage stochastic program in [HK10] to solve a
production planning problem under demand uncertainty, trying to avoid cumulating stocks.

3.1.3 Strategic decisions

We have covered stochastic considerations for operational or tactical production planning problems.
We now discuss strategic decisions like investing in renewable energies and ESS, with questions
of size, technologies and number of ESS and energy generation units. To adapt their energy
mix, factories need to design what distributed generation system is suited for their production.
In [FMH21], Fattahi, Mosadegh, and Hasani focus on the planning in mining supply chains
with renewable energy investment where at each stage, warehouse or generation systems can be
installed. Though economic rentability is crucial, the growing interest in microgrids is driven
by environmental concerns. Thus, instead of minimizing energy waste, a more direct approach
consists of integrating environmental objectives into costs. For example Li et al., in [Li+17],
assess wind and solar generation deployment costs in order to achieve net-zero carbon. On
another note, microgrids bring flexibility and energy independence. In [Pha+19], Pham et al.
extend Golari, Fan, and Jin’s work by considering both stochastic demand and microgrid sizing.
Their goal is to determine if it is economically viable to provide the system with only renewable
energies.

Investing in microgrids doesn’t require only sizing but also investigating the different existing
technologies and their characteristics. In [Tsi+21], Tsianikas et al. study the capacity extension
problem as well as the different storage technologies. An interesting take on the subject is given
in [HBF15]: when most micro-grid investment models consider the ESS sizing at the beginning,
Hajipour, Bozorg, and Fotuhi-Firuzabad proposes to extend the storage capacity and invest
in renewable generation units at different times, leading to a multistage stochastic problem.
This model allows life-cycle constraints or decreasing technology efficiency to have an impact on



56 CHAPTER 3. JOINT PRODUCTION AND ENERGY PLANNING

results.

3.1.4 Contributions

Our contribution in this paper lies in four aspects. First, we propose an optimization model for
a coupled management problem with both production and energy supply planning. We take into
account the multistage structure of the problem, the uncertainties due to onsite renewable energy
generation and binary variables modeling physical production constraints. In particular, we model
shared resource constraints: a choice has to be made between different products at each time.
Therefore, it is crucial, when reducing the problem to stage t with dynamic programming, to have
visibility on the consequences of choosing a product at t. Second, we consider both on-demand
supply with TOU pricing and in-advance energy purchasing. The latest brings complexity to
the multistage problem with first-stage variables impacting the whole horizon costs. Third, we
discuss multiple solution strategies based on well-known and new methodologies: a deterministic
approach known as Model Predictive Control (MPC); Stochastic Dynamic Programming (SDP);
and an approach solving linear multistage stochastic problems, SDDP. Finally, as there does
not exist an efficient algorithm to solve large mixed-integer multistage stochastic problems, we
propose heuristic methods relying on the approximated cost-to-go function given by SDDP. We
highlight the theoretical and practical limits of these solution strategies on numerical examples.

The remainder of the paper is laid out as follows. Section 3.2 introduces the problem formulation.
We present in Section 3.3 dynamic programming methods to solve multistage mixed-integer
stochastic problems. Those methods being unsatisfactory for the problem at hand, we then
proceed to detail different heuristics in Section 3.4. Finally, Section 3.5 presents numerical results.

3.1.5 Notations

To facilitate understanding, we go through some notation used in this paper. We denote
[a : b] := {a, . . . , b} the set of integers between a and b, and [T ] := [1 : T ] the set of non-null
integers smaller than T . Accordingly, X[n] denote the collection X[n] := {Xi}i∈[n]. Generally
speaking, we denote the state variables x, the control variables u and the noise ξ. All random
variables are in bold characters, further if ξ is a random variable then ξ denotes a realization of
this variable. Finally, σ(ξ[t]) represents the σ−algebra generated by {ξτ}τ∈[t].

3.2 A multistage stochastic formulation for joint production and
energy planning

In this section, we present the mathematical formulation of our problem, presented in Section 3.1.1.
We first focus on the operational problem: daily operations the factory has to make. Note
that, though we consider a specific production problem constructed from a practical industrial
application, the proposed numerical approaches detailed in Sections 3.3 and 3.4 can be adapted
to other production problems.

We consider a factory owning solar panels and a battery. Thus, the energy supply is a mix of
solar energy available qPV

t (modeled as random variables), of charge φ+
t and discharge φ−

t from

the battery, and of energy bought from the main grid qgrid
t . Energy can be either bought in

advance (e.g., on a day-ahead market) or in real-time through industrial contracts with fixed

prices. We decompose the energy bought from the grid qgrid
t into energy bought in advance vDA

t ,
considered for now as a given parameter, plus energy bought during the day vID

t . With these
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elements, we need to ensure that the energy supply exceeds the energy demand qload
t , leading to

the following control constraints.

qPV
t + φ−

t − φ
+
t + qgrid

t ≥ qload
t ∀t ∈ [T ], (3.1a)

0 ≤ φ+
t ≤ φ

+
max ∀t ∈ [T ], (3.1b)

0 ≤ φ−
t ≤ φ

−
max ∀t ∈ [T ], (3.1c)

qgrid
t = vDA

t + vID
t ∀t ∈ [T ], (3.1d)

vDA
t ,vID

t ≥ 0 ∀t ∈ [T ]. (3.1e)

The energy demand qload
t is shaped by the factory’s production, derived from the quantities

(uijt )t,i,j of product j produced on machine i at time t. We also introduce binary variables,

(bijt )t,i,j , assigning product j to machine i at time t, leading to the following set of constraint.

∑
j

bijt ≤ 1 ∀i, t, (3.1f)

max
i
bijt + max

i
bij
′

t ≤ 1 ∀t,∀(j, j′) ∈ I, (3.1g)

uimint bijt ≤ u
ij
t ≤ u

imax
t bijt ∀i, j, t, (3.1h)

qload
t = g(uijt , b

ij
t ) ∀t, (3.1i)

bijt ∈ {0, 1} ∀i, j, t. (3.1j)

At each time t, one machine can be assigned to one product at most (3.1f). I is the set of
incompatible products, meaning a couple of products (j, j′) belongs to I if they share resources.
Therefore, they cannot be produced simultaneously (3.1g). Furthermore, production is bounded
by machine capacities (3.1h). Finally, the function g gives the energy load induced by energy
production (3.1i), we assume g linear.

Hence, the state of the system is described by the products and battery stocks. The stocks
of products are modeled with state variables (sjt )t,j . The demand at time t is modeled as a

deterministic vector (djt )j∈[J ]. Initial stocks are empty. Then the stock variables follow dynamic
equations and bounding constraints given by

sjt = sjt−1 − d
j
t +

∑
i

uijt ∀t, j, (3.2a)

sjt ≥ 0 ∀t, j, (3.2b)

sj0 = 0. (3.2c)

Indeed, for each time t and product j, the factory has to satisfy a demand djt , which is ensured
by the positivity of stocks requirement (see Equation (3.2b)). Further, the quantity of energy
stored in the battery, (SOCt)t, is also modeled as a state variable:
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SOCt = SOCt−1 −
1

ρ
φ−
t + ρφ+

t ∀t, (3.2d)

SOCmin ≤ SOCt ≤ SOCmax ∀t. (3.2e)

For notational conciseness, we reduce control variables to vector yt := (bt, ut, q
grid
t , φ+

t , φ
−
t )

and state variables to vector xt := (st, SOCt). Finally, the objective is to minimize total
energy purchases i.e., intra-day energy purchases vID.

V (x0; vDA) := min
y[T ],x[T ]

E
[ T∑
t=1

pID
t v

ID
t

]
(3.3a)

s.t. Equations (3.1) and (3.2), (3.3b)

σ(yt) ⊂ σ(qPV
[t] ) ∀t ∈ [T ]. (3.3c)

The last constraint Equation (3.3c), commonly known as non-anticipativity constraint, represents
the information available when taking decision yt at t. In particular, in this framework, we
observe the random variable qPV

t realization, before making decisions yt, with no knowledge of
future random realizations from t+ 1 to T .

We now consider the strategic problem of choosing the best vDA that minimizes day-ahead costs
plus operational costs V (x0, v

DA). This can be done by introducing an initial time step t = 0
where such strategic variables are decided. This amounts to solving problem 3.4.

V (x0) := min
vDA
t ≥0

T∑
t=1

pDA
t vDA

t + V (x0; vDA) (3.4)

In the next section, we present solution methods for this problem based on Dynamic Program-
ming.

3.3 Dynamic Programming approaches

Assuming that the noises are finitely supported, a multistage stochastic problem like Problem 3.3
can always be cast as a large-scale deterministic problem (see e.g., [BL97]). However, the size of
these deterministic equivalents is linear in the number of scenarios, which is often exponential
in the horizon. A solution consists in compressing the information required to make a decision.
To this end, we make a crucial stagewise independence assumption and turn to Dynamic
Programming (DP) tools, presented here.

3.3.1 Stochastic Dynamic Programming

We consider a controlled dynamic system, that is a sequence of random vector x[T ] that follows a
dynamic, affected by a sequence of noises ξ[T ]. Those random vectors describe the state of the
system across time, here product stocks st and battery energy level SOCt. Each noise ξt takes
value in a finite set Ξt, and we denote Ω :=

∏
t∈[T ] Ξt. We assume that these noises represent all

the uncertainty in the problem at hand (here solar energy), with known probability distribution,
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resulting in a probability space (Ω,A,P). We call scenario a sequence ξ[T ] of realization of the
noise at each time step.

We consider the Problem 3.3, parametrized by vDA and restrained to sub-horizon [t : T ] from
initial state xt−1, and we denote its expected optimal value Vt(xt−1; vDA). Then, with the
stage-wise independence assumption, the DP principle ensures that the value functions follow
the following recursive equations:

V̂t(x, ξ; v
DA) = min

yt∈Yt(x,ξ)
xt∈Xt(x,yt,ξ)

pID
t v

ID
t︸ ︷︷ ︸

instantaneous cost

+ Vt+1(xt; v
DA)︸ ︷︷ ︸

cost-to-go

(3.5a)

Vt(x; vDA) = E
[
V̂t(x, q

PV
t ; vDA)

]
, (3.5b)

VT+1(x; vDA) = 0. (3.5c)

For notational conciseness, we denote Yt(x, ξ, vDA) the feasible control set representing constraints
Equation (3.1) depending on current state x, noise realization ξ, and strategic variables vDA.
Similarly, we denote Xt(x, u, ξ) the state set representing dynamics Equation (3.2) depending on
previous state x, control u and noise ξ.

However, for any x ∈ Xt−1, computing Vt(x; vDA) requires full knowledge of Vt+1. With continuous
state, it is usually impossible. Therefore, to accommodate for inexact value functions, we introduce
the bellman operators which generalize Equations (3.5) so that the dynamic equations hold for
any given function R approximating the cost-to-go Vt+1. The backward operator Bt, defined in
Equation (3.6a),

Backward operators


B̂t(R) : x, ξ 7→ min

yt∈Yt(x,ξ)
xt∈Xt(x,yt,ξ)

pID
t v

ID
t +R(xt),

Bt(R) : x 7→ E
[
B̂t(R)(x, qPV

t )
]
,

(3.6a)

returns an approximation, at a given state x, of the cost-to-go Vt starting from time t, given an
approximation R of the cost-to-go starting from time t+ 1. Thus, given a discretization of each
state space Xt, and an interpolation method we can, recursively, compute an approximation of
every cost-to-go function see Algorithm 5.

We then define in Equation (3.6b) the forward operator, which returns the optimal next state xt,
given a starting state x, a noise ξ and an approximation R of the cost-to-go from t+ 1. Note
that, in practice, computing B̂t(R)(x, ξ) or F̂t(R)(x, ξ) consists in solving the same deterministic
problem. Nevertheless, if the backward operator is well-defined, the forward operator requires a
choice if the optimal solution is not unique. To be completely rigorous, we should say that a
forward operator defines a selection of the optimal solution set.

F̂t(R) : x, ξ 7→ y?t , x
?
t ∈ arg min

yt∈Yt(x,ξ)
xt∈Xt(x,yt,ξ)

pID
t v

ID
t +R(xt) (3.6b)

DP is a powerful tool as the multistage problem considers (|Ξ|T ) scenarios and turns the
exponential complexity in the horizon T into a linear one. However, it is limited by what is
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Algorithm 5: Stochastic Dynamic Programming

1 Input : x0, discretization grids XDt , interpolation operator.

2 Output : approximated value function Ṽt
3 ṼT+1 = 0.
4 for t : T → 1 do
5 for xDt−1 ∈ XD

t−1 do
// We discretize Xt

6 for ξt ∈ Ξt do
7 Solve the one-stage deterministic optimization problem:

8 Ṽt(x
D
t−1, ξt; v

DA) = B̂t(Ṽt+1)(xD
t−1, ξt; v

DA).

9 Ṽt(x
D
t−1; vDA) =

∑
ξt∈Ξt

πξt Ṽt(x
D
t−1, ξt; v

DA) ; // expected value

10 Define Ṽt for any x ∈ Xt−1 by interpolation on
{

(xDt−1, Ṽt(x
D
t−1; vDA))

}
xDt−1∈XD

t−1
.

known as the curse of dimensionality. Indeed, we have to solve, for each time step, |Xt|.|Ξ|
problem. A discretization of Xt usually requires a number of points exponential in the dimension
of Xt. Thus, in practice, DP cannot be used for states with more than 5 dimensions.

Remark 5. In order to represent the strategic problem as a stochastic dynamic system, we need
consider an extended state (xt, v

DA), where vDA is decided at t = 0 and then carried on, as part
of the state, from stage to stage by the dynamics of the system. This extension increases the
dimension of the system from J + 1 to J + 1 + T , making algorithm 5 computationally intractable
as typical T is at least 24.

When J ≤ 3 algorithm 5 can be reasonably used to address Problem 3.3. However, computation
time is still high as we solve O(T.|XDt |.|Ξ|) MILP. Thus, we present another algorithm, exploiting
sampling methods, in the next section.

3.3.2 Stochastic Dual Dynamic Programming (SDDP)

To counteract the DP computational issues, a class of Trajectory Following Dynamic Programming
(TFDP) algorithms (see [FL23] for recent overviews) has been developed. The crux of these
algorithms is to iterate between forward phases that compute state trajectories, and backward
phases that improve cost-to-go estimations. More specifically, in the forward phase of a TFDP
algorithm, a state trajectory is computed using the current cost-to-go estimations. Then in a
backward phase, the cost-to-go estimations are refined around the state trajectory computed in
the forward phase. These approximations are given as the maximum of elementary functions
called cuts.

For linear multistage stochastic problems with stagewise independence, the Stochastic Dual
Dynamic Programming (SDDP) algorithm [PP91] has proven to be an efficient tool, widely
used in the energy community in particular for long-term hydro-management. It is the most
well-known and studied example of TFDP algorithm, relying on Benders’ cut obtained through
linear programming duality, assuming the problem is convex and continuous. In line with SDDP,
the Stochastic Dual Dynamic integer Programming (SDDiP), [ZAS19], assumes that all state
variables are binary, that there exists some continuous recourse ensuring relatively complete
recourse assumption, and derives specific linear cuts. As one can always represent bounded integer
variables, and approximate continuous variables, through binaries, the algorithm is theoretically
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applicable for a large number of settings, including ours, but is limited in practice as each step
requires solving a MILP, and as the convergence is generally slow.

Another TFDP algorithm, the Mixed Integer Dynamic Approximation Scheme (MIDAS) (see
[PWB20]) assumes the monotonicity of the cost-to-go functions and uses piecewise constant cuts
to approximate them. Finally, the Stochastic Lipschitz Dynamic Programming (SLDP) (see
[ACF22]), simply assumes Lipschitz regularity of the cost-to-go functions and uses reverse norm
cuts. SDDiP, MIDAS and SLDP might be applicable to the industrial microgrid setting but are
generally slow to converge without additional, problem-specific, cuts. However, the subject is an
active field of research: variants and enhancements of those algorithms are frequently published
(e.g., [FR22; QGK23]). Unfortunately, to the best of our knowledge, there is no off-the-shelf
implementation of efficient TFDP algorithms for mixed-integer stochastic programs.

Therefore, we consider the continuous relaxation of Problem 3.3, and adapt the tools in Sec-
tion 3.3.1 for the continuous relaxation, using exponent r to indicate the problem at hand is
relaxed. It is the same problem as Problem (3.4) but we assume all binary variables are in [0, 1]
instead of {0, 1}, represented by yrt ∈ Yrt (xt−1, q

PV
t ; vDA).

Algorithm 6: Stochastic Dual Dynamic Programming

// Initialization

1 k = 0, V r,0
t = LB, vDA.

2 for k : 0, . . . do
3 Simulate a scenario {ξkt }t∈[T ].

// Forward phase

4 xk0 = x0.
5 for t : 1→ T do

6 ykt , x
k
t = F̂rt (V r,k

t )(xkt−1, ξ
k
t ; vDA).

// Backward phase

7 V r,k
T+1 = 0

8 for t : T → 1 do
// Cut computation

9 for ξ realization of ξt do

10 Solve B̂rt (V
r,k
t+1)(xkt−1, ξ; v

DA) and obtain coefficients α̂kt (ξ) and β̂kt (ξ) such that:

α̂kt (ξ)
Tx+ β̂kt (ξ) ≤ B̂rt (V

r,k
t+1)(x, ξ; vDA) ∀x.

11 Define αkt = E
[
α̂kt (ξt)

]
and βkt = E

[
β̂kt (ξt)

]
.

12 Define V r,k
t : x 7→ max

κ≤k
(ακt

Tx+ βκt ).

Leveraging the convexity of the relaxed Problem 3.3, the SDDP Algorithm 6, approximates
each V r

t+1 as a maximum of affine functions. More precisely, at iteration k, we first compute a

trial trajectory (xkt )t∈[T ]. Then, in the backward phase, we can compute Brt (V
r,k
t+1) by solving

|Ξt| linear problems. Linear programming duality yields a sub-gradient of Brt (V
r,k+1
t+1 ) at xk+1

t−1 ,

which in turn defines an affine function which underestimates Brt (V
r,k+1
t+1 ) ≤ Brt (V r

t+1) = V r
t . In

particular, at iteration k, the approximate cost-to-go functions V r,k
t are given as a maximum of
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affine cuts, i.e., V r,k
t (x) = max

κ≤k
{ακt + βκt x}.

Recall that, given any approximated cost-to-go function, the forward Bellman operator (see
Section 3.3.1), produces a state-based feedback, satisfying in particular the binary constraints.
Thus, it seems natural to use the functions V r,K

t as approximated cost-to-go, leading to a strategy

through the forward operators F̂t(V r,K
t ). The main limit of this approach is that we are quite

greedy in the way we repair the binary constraints. Indeed, V r,K
t does not account for binary

constraints, and the forward operator only considers their impact on one time-step. In particular
in the problem at hand (with shared resource constraints), SDDP approximated cost-to-go
functions do not capture the necessity to make a choice between two products in the future.
Therefore, a decision at t leading to infeasibility in the future, can have a finite SDDP estimated
cost-to-go, and be selected by the forward operator. We illustrate the limit of this approach in
the following toy example.

Example 1 (Limit of continuous relaxation.). Consider a production unit that produces two
products j = A,B, over T = 2 time steps and one machine. The shared resource constraint,
modeled through binary variables bjt , implies that we must decide which product to produce at
t = 1, and which at t = 2. We look for the production plan minimizing costs while satisfying a
demand D = 1 in both products at the end of the horizon. The problem is formalized as follows.

min 3uA1 + 2uB1 + (uA2 + uB2 ) (3.7a)

s.t uj1 + uj2 ≥ D j = A,B, (3.7b)

0 ≤ ujt ≤ 2bjt j = A,B t = 1, 2, (3.7c)

bAt + bBt ≤ 1 t = 1, 2, (3.7d)

bjt ∈ {0, 1}, u
j
t ≥ 0 j = A,B t = 1, 2. (3.7e)

For the true problem, it is optimal to produce B in the first period and A in the second period,
resulting in an optimal cost of 3. However, in the continuous relaxation of Problem (3.7),
bjt ∈ [0, 1], and producing both products at the same time is allowed. For instance, producing both
products at time t = 2 (with bA2 = bB2 = 0.5) is admissible for the relaxed problem, yielding an
optimal cost of 2.

Let V r
2 be the relaxed cost-to-go function given by:

V r
2 (uA1 , u

B
1 ) = min

uA2 ,u
B
2 ,b

A
2 ,b

B
2

uA2 + uB2 (3.8a)

s.t uj1 + uj2 ≥ D j = A,B, (3.8b)

0 ≤ uj2 ≤ 2bj2 j = A,B, (3.8c)

bA2 + bB2 ≤ 1, (3.8d)

bj2 ≥ 0, uj2 ≥ 0 j = A,B. (3.8e)

Now, using the cost-to-go approximation V r
2 to determine optimal decisions of the mixed-integer

problem at t = 1, we solve:
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min
uA1 ,u

B
1 ,b

A
1 ,b

B
1

3uA1 + 2uB1 + V r
2 (uA1 , u

B
1 ) (3.9a)

s.t bA1 + bB1 ≤ 1, (3.9b)

0 ≤ uj1 ≤ 2bj1 j = A,B, (3.9c)

bj1 ∈ {0, 1} j = A,B. (3.9d)

Note that, when solving Problem (3.9), we make decisions at t = 1 considering the cost impact
at t = 2, but not knowing what decisions are attached to this cost. In DP, infeasibility is supposed
to be propagated through costs: in this example, with the real cost-to-go function, V2(0, 0) = +∞
and the solution uA1 = uB1 = 0 would never be chosen. However, if we use the relaxed cost-to-go
function, the infeasible solution uA1 = uB1 = 0 has a cost 0 + V r

2 (0, 0) = 2 and is chosen rather
than the optimal solution uA1 = 1;uB1 = 0, whose cost is 2 + V r

2 (0, 1) = 3.

We move on to present heuristics in Section 3.4, and address this particular limit in Section 3.4.4
through a look-ahead heuristic that considers more than one time-step.

3.4 Heuristics for multistage problems

So far, we have presented a stochastic algorithm with unreasonable computational time and a
stochastic algorithm solving a continuous relaxation of our problem. Those are exact methods,
but will not allow us to solve the problem in a satisfactory manner. Could we come up with
heuristics taking into account uncertainties, using SDDP, and solving mixed-integer problems such
as ours? In this section, we present different heuristics, either relaxing information constraints
i.e., deterministic, or relaxing integrality to a point.

3.4.1 An Expected Value (EV) corrected heuristic

One of the challenges is to take into account random variables. A common simplification consists
in reducing the problem to its deterministic version, by replacing the random variable with our
current best estimation. We are then in the anticipative framework which consists in assuming
we can look into the future and know the noises realization i.e., relaxing constraint 3.3c. More
precisely, solving the anticipative problem, given a scenario qPV

[T ] , returns a solution perfectly

adapted to this scenario, of optimal value V ant(x0, q
PV
[T ] ). Then, the Expected Value (EV) solution

amounts to solving the anticipative problem, given the expected scenario qPV[T ] .

However, we are not in a complete recourse setting, meaning that the deterministic production
and energy plan computed is not necessarily admissible. Therefore, a first heuristic consists in
computing the deterministic solution fixing part of control variables, and then, adjusting the rest
of the variables to actual random variable realization. In our particular microgrid problem, we
fix production variables and then adjust energy flows to actual solar energy produced. We opt
for a simple strategy described in Figure 3.2.

This strategy has no flexibility, which is needed in a system subjected to uncertainties. It serves
as a benchmark for stochastic solutions.

3.4.2 Model Predictive Control

To add flexibility to the previous approach, we present the Model Predictive Control (MPC)
approach, as a first adaptive approach. To use MPC we need some forecast methodology, that
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We fix qgrid
t

to match
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Figure 3.2: Corrected EV heuristic algorithmic scheme

takes available information to predict the values of the random variables
{
qPV
t

}
t∈[T ]

. The

algorithm then consists in solving successive deterministic sub-problems (see Algorithm 13). Step
after step, it applies the decision of the first control obtained, reveals the realization of the next
random variable, and recomputes all other decisions, updating forecasted values if possible.

Algorithm 7: Model Predictive Control

1 Input : x0, initial forecast {qPV
τ,0 }τ∈[T ].

vDA = arg min
T∑
t=1

pDA
t vDA

t + V ant(x0, q
PV
[T ],0; vDA)

for t : 1→ T do
2 Update forecasted values {qPV

τ,0 }τ∈[T ].

y∗t , . . . , y
∗
T = arg min

T∑
τ=t

pID
t v

ID
t

s.t. yτ ∈ Yτ (xτ−1, q
PV
τ,0 ; vDA) ∀τ ∈ [t : T ],

xτ ∈ Xτ (xτ−1, yτ , q
PV
τ,0 ) ∀τ ∈ [t : T ].

xt ∈ X (xt−1, y
∗
t , q

PV
t,0 )

As long as we can get a solution to the MILPs in a reasonable time, MPC is an easy option to
implement. However, this method yields no performance guarantee, and does not really take
randomness into account, as the solution is computed for a single possible realization, but simply
recomputes the solution as more information becomes available. Consequently, the quality of the
solution provided by MPC depends mainly on the quality of the forecasted values, the flexibility
of the problem and the sensitivity of the problem to uncertainty.

3.4.3 2-stage stochastic programming

The strategic design problem balances the design cost
∑

t p
DA
t vDA

t and the operational cost
V (x0; vDA). The 2-stage stochastic programming consists in relaxing the non-anticipativity
constraint for all operational decisions. Hence, the design problem becomes a two-stage stochastic
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program, where the first stage decision is the strategic decision vDA and the recourse are the
operational decisions.

min
vDA∈RT+

∑
t

pDA
t vDA

t + E [V̂ ant(x0, q
PV
[T ]; v

DA)]. (3.10)

However, computing the exact value of E [V̂ ant(x0, q
PV
[T ]; v

DA)] would require to solve a deter-

ministic operational problem for each possible scenario qPV
[T ] ∈ Ω. There is usually far too many

scenarios to consider, thus, we resort to Sample Average Approximation, which is the 2-stage
extension of Monte Carlo methods. We draw SMC scenarios, and obtain the following 2-stage
formulation:

V 2SMC (x0) := min
vDA∈RT+

min
(xst ,y

s
t )

∑
t

pDA
t vDA

t +

SMC∑
s=1

1

SMC

(
T∑
t=1

pID
t v

ID
t,s

)
(3.11a)

s.t. xst ∈ Xt(xst−1, y
s
t , q

PV
t,s ) ∀t ∈ [T ],∀s ∈ [SMC ] (3.11b)

yst ∈ Yt(xst−1, q
PV
t,s , v

DA) ∀t ∈ [T ],∀s ∈ [SMC ]. (3.11c)

All the approaches presented in this section up to this point relax non-anticipativity constraints
but keep binary constraints by solving MILPs. In Section 3.3.2, we saw that SDDP solves
Problem (3.3) with non-anticipativity constraints but relaxing binary constraints. We now look
for a trade-off between information relaxation and integrality relaxation.

3.4.4 Look-ahead heuristic

Were the forward operator (see Equation (3.6b)) to have more visibility on the future variable
possibilities (or impossibilities), we have the intuition that the algorithm would perform better.
Indeed, as it is defined, the operator takes the best decision possible at t by optimizing a one-stage
problem minimizing the current cost at t plus an approximate cost-to-go function from t + 1.
Details of the problem complexity are thus only represented over one stage, and the impact
of decision at time t on the next stage should all be taken into account by the approximate
cost-to-go function.

To have a better representation of the problem, we can consider τ -stage problems with a final
cost-to-go function Ṽt+τ instead of one-stage problems (with final cost-to-go function Ṽt+1). More
precisely we define a τ -look-ahead Bellman operator Bτt as:

B̂τt (R) :x, ξ 7→ min
yt,xt

pID
t v

ID
t + min

(xt′ ,yt′ )
E
[ t+τ∑
t′=t+1

pID
t′ v

ID
t′ +R(xt+τ )

]
(3.12a)

s.t. xt ∈ Xt(x, yt, ξ), (3.12b)

yt ∈ Yt(x, ξ; vDA) (3.12c)

xt′ ∈ Xt′(xt′−1, yt′ , q
PV
t′ ) ∀t′ ∈ [t+ 1 : t+ τ ] (3.12d)

yt′ ∈ Yt′(xt′−1, q
PV
t′ ; vDA) ∀t′ ∈ [t+ 1 : t+ τ ] (3.12e)

σ(ut′) ⊂ σ(qPV
[t+1:t′]) ∀t′ ∈ [t+ 1 : t+ τ ] (3.12f)

Bτt (R) : x 7→ E
[
B̂τt (R)(x, qPV

t )

]
. (3.12g)
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In this setting, the first-stage decisions are optimized knowing the impact they have on the next
τ − 1 stages, thanks to Equations (3.12b) to (3.12f), and a cost-to-go function R from t+ τ + 1.
However, the τ−stage decisions are taken without any visibility on the future except a given cost-
to-go function. For this reason, when solving each τ−stage problem Bτt (Rt+τ+1)(xt−1), we only
store the first-stage variables yt and then move along to the next sub-problem Bτt+1(Rt+τ+2)(xt).

In a sense, we allow the operators to look ahead of time to choose their decision at t, and call
this method the look-ahead heuristic. We associate to the backward operator B̂τt a forward
operator F̂τt (R) : Xt−1 × Ξt → Xt × Yt which returns x?t , y

?
t depending on current state x and

noise realization ξ.

For clarity, we explicitly give the 2-look-ahead Bellman operator:

B̂2
t (R)(x, ξ) = min

xt,(xs
t+1)s∈|Ξt+1|

yt,(y
s
t+1

)s∈|Ξt+1|

pID
t v

ID
t +

∑
s

P(qPV
t+1 = qPV

t+1,s)
[
pID
t+1v

ID
t+1,s +R(xst+1)

]
s.t. xt ∈ Xt(x, yt, ξ),

yt ∈ Yt(x, ξ; vDA),

xst+1 ∈ Xt+1(xt, y
s
t+1, q

PV
t+1,s) ∀s ∈ |Ξt+1|

yst+1 ∈ Yt+1(xst , q
PV
t+1,s; v

DA) ∀s ∈ |Ξt+1|

B2
t (R)(x) = E

[
B̂2
t (R)(x, qPV

t )
]
. (3.13a)

Note that this 2-look-ahead Bellman operator considers the exact cost at t and t+ 1, and uses R
as an estimation of expected cost-to-go from t+2 to T . In particular, due to the new information,
we must consider as many decisions yst+1 as there are realizations for the random variable qPV

t+1.

Combining these new operators with the approximated cost-to-go functions computed by SDDP
(see Section 3.3.2), we get a heuristic where the non-anticipativity constraints hold at any time,
and the integrality constraints are kept on τ time steps. Unfortunately, increasing the look-ahead
horizon i.e., τ , greatly increases the complexity of the sub-problems we solve. For instance, with
|Ωt| = 10, the backward operator B̂τt at t solves a problem with 10τ−1 times more variables than
B̂t.

3.5 Numerical results

We now present a study case from our industrial partner on which we evaluate the numerical
methods presented above. In Section 3.5.1 we detail the study case, intraday results, given in
Section 3.5.2, show that the MPC method is most adapted to our study, it is then used for the
day-ahead problem in Section 3.5.3 where SDDP shows its advantages.

3.5.1 Study Case

The problem described in Section 3.5.1 is motivated by a cement factory in South Korea. We
solve the problem for hourly planning on one day, with T = 24 time steps. In the Republic of
Korea, electricity rates are fixed for the industry and depend on different time slots and seasons.
We took the rates given by the Korea Electricity Power Corporation website [Newa] and thus
obtained {pID

t }t∈[T ]. We consider that buying energy in advance is cheaper and fix the day-ahead
rates to 90% of the real-time rates.

Then we collect solar irradiance data on [Newb]. From this data, we use a forecast algorithm
to predict a daily solar energy generation for a park of capacity CPV ∈ {2, 4, 8, 12} in MWc.
The model is trained on the last 72 hours data to produce generation scenarios over the next 24
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hours. From this model we estimate, at each time step t, 9 quantiles. We finally assume that the
noise is stagewise independent, leading to 9T scenarios.

The factory owns I = 3 mills and produces J = 3 different types of cement. Production bounds
are given by the factory. An analysis of the factory’s data leads us to model a mill’s energy
consumption, on the range [uimint , uimaxt ], as an affine function of its cement production (3.1i).

We study the impact of three different battery sizes, proportional to the installed renewable
capacity: SOCmax is equal to the maximum quantity of energy the solar panels can produce in
0.5, 3 or 6 hours. For example, on a solar park of 4 MWc, we consider three battery capacities: 2,
12 or 24 MWh. We also fix φ+

max and φ−max to a quarter of the battery’s capacity per time-step
and the efficiency factor ρ to 0.9.

3.5.2 Intraday results

In this section, we present and analyze the results obtained when solving problem (3.3) on
instances in which energy can only be bought in real-time, which is equivalent to fixing vDA

t = 0
for all t. Further, we only consider a demand at the end of the day: djt > 0 only for t = T .

Figure 3.3: Anticipative regret (AR) in percentage for different solar park capacity and ESS
capacity: increasing solar energy (and thus variability) from left to right, and increasing battery
storage capacity (proportional to solar energy available) from top to bottom.

On a given day, for various renewable size (CPV ∈ {2, 4, 8, 12}) and battery sizing (SOCmax
represents 0.5, 3 or 6 hours of maximum renewable production), we test the different strategies,
evaluating them over 500 common scenarios drawn from our statistical model. More precisely,



68 CHAPTER 3. JOINT PRODUCTION AND ENERGY PLANNING

we compare:

1. the elementary strategy, described in Section 3.4.1, which solves the EV problem abd then
adapt energy variables following a deterministic procedure as noises are revealed;

2. the MPC strategy, see Section 3.4.2, which consists in solving deterministic sub-problems
at each stage, with updated information, to adjust the solution trajectory accordingly;

3. and the Look-Ahead (LA), with τ = 2, explained in Section 3.4.4, strategy which computes
a solution with dynamic programming using an under-approximation of future costs given
by SDDP.

Each strategy yields a noise-based policy which, depending on a scenario, computes a trajectory of
the system. To evaluate a strategy’s performance over a given scenario, we define the anticipative
regret of admissible noise-based policy π, on a scenario ξ[T ], as the relative gap between its cost
and the anticipative lower bound:

ARπ(ξ[T ]) =
V̂ π(x0, ξ[T ]; v

DA)− V ant(x0, ξ[T ]; v
DA)

|V ant(x0, ξ[T ]; vDA)|
. (3.14)

In Figure 3.3 we report the anticipative regret of each strategy. The results clearly show MPC’s
superiority in these instances. On the one side, the EV heuristic yields unsatisfactory results in
comparison to MPC: its expected anticipative regret is always higher, and its expected cost as
well. Further, except on the first column, which corresponds to instances with few uncertainties
(i.e., a solar park of 2MW), and the first instance of the second column (a more uncertain instance
but with a small battery), the EV heuristic performs worse than the look-ahead heuristic. As
uncertainties grow (from left to right), the costs of the EV heuristic are farther and farther away
from the anticipative lower bound, showing that a purely deterministic procedure is not relevant
to our problem.

On the other side, the look-ahead heuristic, properly taking uncertainties into account with a
stochastic procedure, but relaxing some integrality constraints, does not perform as well as MPC.
Indeed, the latter, adjusting the solution trajectory to uncertainties, yields solutions close to
their anticipative lower bound: even for the most volatile instances (i.e., the ones with a solar
park of 12MWc, all on Figure 3.3’s fourth column), the anticipative regret is lower than 5% and
in most cases insignificant. These performances can be explained by the problem structure: the
uncertainty source does not impact significantly future costs, in the case of solar energy variations
at t, MPC foresees the cost impact and adapts accordingly. Furthermore, for industrial problems
with renewable generation, we confirm the necessity of installing an ESS to make the system
flexible. In Figure 3.4, we plot the optimal expected cost of the various methods on instances
with growing ESS capacity. Clearly, the expected optimal expected cost decreases as the ESS
capacity increases, although the marginal impact of the ESS capacity is decreasing.

Whereas MPC results are better, we call attention to its limits: on Table 3.1 we can see that
MPC takes longer in computation time than the look-ahead heuristic, even more so on instances
with the most variability. In these instances, it remains reasonable (a few seconds per problem
at the most for an hour step time problem), but with larger instances, and more constraints, it
could be unsuitable. Note that SDDP converges after only a 100 iterations, taking approximately
250s per instance.
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Figure 3.4: Expected value of strategies with 95% confidence interval.

SOCmax 0.5h 3h 6h
CPV (MWc) MPC L-A SDDP MPC L-A SDDP MPC L-A SDDP

2 21 6.5 277 12 7.6 268 25 20 262
4 26 8.0 213 4.4 2.9 225 38 18 238
8 254 11 249 136 26 234 193 24 260
12 248 10 266 125 22 250 135 23 261

Table 3.1: Expected computation time (in seconds) for different solar park capacity and ESS
capacity.

3.5.3 Day-ahead results

We now consider the full Problem 3.4 with strategic and operational decisions. In particular, we
consider an initial time step (t = 0), where the industrial buys in advance energy quantities for
the whole horizon. To our knowledge, this type of contract does not exist yet in South Korea,
but it could be interesting for the regulator to encourage certain consumption schemes. It can
also model the access to energy markets for large consumers or consumers aggregated through
virtual power plants. We fix the in-advance prices at 90% of intra-day prices.

The problem can be decomposed into two parts: first a strategical problem with variable vDA, then
an operational sub-problem, parametrized by vDA. Our intuition is that a deterministic method
might not be flexible enough because first-stage decisions impact the whole horizon. Note that the
parametrized problem 3.3 corresponds to the intraday problem we solve in Section 3.5.2. We saw
that the most efficient method to solve problem 3.3 is MPC. In this section, we determine through
different methods the best strategical decision vDA and then run MPC on the parametrized
operational problem.

We assume that the demand is only positive at the end of the day djT > 0 and we test various
renewable sizes (CPV ∈ {2, 4, 8, 12}). In Section 3.5.2, we tested different battery size, and
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results showed that extending the battery capacity, to a certain point, improves costs and
the system flexibility. Consequently, we now fix the battery capacity to 3 hours of maximum
renewable production.

To optimize vDA, we test 3 methods evaluated over 1000 common scenarios:

1. the Expected Value strategy which solves a deterministic version of Problem 3.4 replacing
random variables by their expected value;

2. the 2−stage strategy, detailed in Section 3.4.3, which takes the decision vDA minimizing the
expected cost over SMC = 10 scenarios (ξs[T ])s∈[SMC ]. As SMC is small, compared to the

noise space, for computational reasons, we consider the median scenario with probability 1
2 ;

3. the SDDP strategy in Section 3.3.2 solves the continuous relaxation of Problem 3.4, and
yields a solution taking into consideration the uncertainties on the whole horizon, but
relaxing integrality.

OPT AR (in %)
CPV (MWc) EV 2stage SDDP EV 2stage SDDP

2 6067 6023 6038 1.6 0.9 1.1
4 5471 5483 5451 2.1 2.3 1.7
8 4552 4553 4481 4.2 4.2 2.5
12 3714 3691 3641 8.7 7.9 6.7

Table 3.2: Expected Cost (Opt) and Anticipative Regret (AR) of the solution obtained when
finding vDA with the different methods (EV, 2−stage, SDDP); parametrizing the operational
problem with this vDA; then solving the parametrized operational problem with MPC.

EV 2stage SDDP
CPV I(vDA

EV ) V (x0; vDA
EV ) Opt I(vDA

2S ) V (x0; vDA
2S ) Opt I(vDA

r ) V (x0; vDA
r ) Opt

2 6002 65 6067 5830 193 6023 5659 379 6038
4 5369 102 5471 5123 360 5483 5102 349 5451
8 4357 195 4552 4073 480 4553 4043 438 4481
12 3394 320 3714 2965 726 3691 3094 548 3642

Table 3.3: We obtain vDA
EV , v

DA
2S , v

DA
r by solving the problem respectively with the EV strategy,

2−stage programming and SDDP; then we parametrize and solve the operational problem with
MPC for each vDA.

From Table 3.2, reporting simulated cost and anticipative regret of the various heuristics, we
observe that, except for the instance with less uncertainties (first line), the day-ahead energy
purchases determined with SDDP yield a lower expected cost as well as a lower anticipative
regret than those determined with 2−stage programming or the EV strategy. As uncertainties
grow (from top to bottom on the table), the anticipative regret increases and the gap between
the AR of EV and the one of SDDP gets wider. Indeed, in the instance with a solar park of
4MWc, the anticipative regret is 0.4% lower for SDDP whereas it is 2% lower for the instance
with more uncertainties (solar park of 12MWc).

On Table 3.3 we separate design costs I(vDA) from operational costs V (x0; vDA) for all instances
solved. Whereas the EV strategy essentially pays energy in advance, the two-stage and SDDP
strategies have lower design costs and buy more energy in real-time. This can be explained
because a stochastic approach is looking for a trade-off between initial and recourse decisions.
Assume that we have more energy than predicted, this extra energy comes for free and we better
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not have bought too much energy in advance, forcing us to throw this extra energy away (we
can’t charge the battery more than what is allowed). On the contrary, if we have less energy
than predicted, we must either adapt the production plan (which might be possible) or buy
energy in real-time which is not that much more expensive than if we bought it in advance
(110% of day-ahead prices). Thus, we understand that in this problem, it is more efficient to
underestimate the quantity of energy to buy from the main grid, as we have more to gain if the
solar realization exceeds its prediction than we have to lose in the opposite case.

We give some additional insights on the various strategies in Figures 3.5 to 3.8. In Figure 3.5,
we illustrate the day-ahead purchases over time. As expected, the day-ahead purchases are
concentrated in the night and early morning, when energy from the grid is cheaper and no solar
energy is available. Note that contrary to other approaches where day-ahead purchases are
first-stage decisions, the anticipative day-ahead purchases are scenario dependent. Thus, we
plot their expectation, which leads to a smoother function. Indeed, the minimum production
constraint induces a discontinuity in the energy-load, and thus the day-ahead purchases. This is
also reflected in Figure 3.6, where we plot the expected number of machines (out of 3). This is
caused by the day-ahead purchases which shape the production: if energy has been bought for 2
machines, turning a third one on would be costly unless the available solar energy can cover it.

Figure 3.5: Day-ahead purchases y (in MWh) over time with the different methods (EV, 2−stage,
SDDP). Averaged anticipative’s day ahead purchased are also given.

Figure 3.6: Expected number of machines turned on (out of 3) over time with the different
methods (EV, 2−stage, SDDP) and with the anticipative solution.

Moreover, on Figure 3.7, we plot the expected battery storage (thick lines) over time for each
method and the standard deviation in dashed lines. Notably, the anticipative solution doesn’t
use the battery as much as the other methods: indeed, as it is aware of the exact amount of
solar energy that will be available, it can adapt the production of early stages precisely and does
not need the flexibility to compensate for uncertainties. We can observe that the EV strategy
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always makes more use of the battery than the stochastic strategies (2−stage and SDDP). This
confirms that a deterministic approach needs more flexibility to recover a good solution than a
stochastic one.

Figure 3.7: Expected trajectory of the battery (in MWh) over time with the different methods
(EV, 2−stage, SDDP) and with the anticipative solution.

Finally, we can see in Figure 3.8 the cumulated stocks produced over time for each method. We
observe that as uncertainties grow (from left to right), the stochastic solution (green line) gets
closer to the anticipative production (grey line).

Figure 3.8: Evolution of the cumulated product stocks over time with the different methods (EV,
2−stage, SDDP) and with the anticipative solution.

3.5.3.1 Results on stagewise dependent scenarios

In our use case, the only uncertainty lies in the day-ahead forecast error of solar production.
This forecast error was based on an advanced statistical model that we consider as ground truth.
As the aim of this work is to compare various methodological approaches we considered a simpler
model with stagewise independent residual errors (see Section 3.3).

As this assumption is not strictly satisfied by the advanced statistical model, we simulated the
strategies on scenarios obtained from the advanced statistical model (see Figure 3.9). We find
that, for these stagewise dependent scenarios, MPC is still the best method for the intraday
problem, and the SDDP approach gives significantly better results than the EV strategy for the
day-ahead problem (see Figure 3.9). We also observe that the expected optimal value of the SDDP
approach is close to the expected anticipative optimal value. Thus, even if it would be possible
to use a more advanced statistical model to train the SDDP approach (e.g., autoregressive or
Markov Chain models), we do not believe that it would lead to significant improvements in our
use case.
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Figure 3.9: Expected Cost (Opt) of the solutions obtained when solving the operational problem
parametrized by day-ahead purchases vDA of the Anticipative, EV and SDDP strategies, first
on a thousand scenarios with independence assumption; then on a thousand scenarios from the
advanced statistical model (A).

3.6 Conclusion

In this paper, we considered a common problem in the industry: jointly optimizing the production
planning and the energy supply of a factory, considering intra-day and day-ahead decisions. For
ecological reasons we included renewable energies, leading to a stochastic optimization problem.
We proposed various solution methodologies and compared them on a realistic industrial case
study.

The main difficulty of the production plan comes from binary variables that cannot be relaxed.
They are crucial to modeling the hard constraints of the problem. Integrating energy operations
into the problem obliges us to handle uncertainties. In all the proposed algorithms to solve
the problem, a trade-off must be found between relaxing integrality and relaxing information.
For instance, MPC is fully deterministic whereas SDDP solves the continuous relaxation of the
stochastic problem. In the tests we have conducted, we found that the right balance depends on
the problem.

Indeed, for the intraday problem, where strategic decisions are given, we saw that using the
Model Predictive Control algorithm, which consists in replacing the stochastic variables with
deterministic ones, and reevaluating decisions at each stage, get the best results. However, for
the day-ahead problem, we saw that solving the relaxed version of the problem with For instance,
MPC is fully deterministic whereas SDDP yields better strategic decisions as it is more aggressive
in its day-ahead buying decisions. Indeed, having too much energy is less costly than having
too little. Other methods were considered but did not yield interesting results in our case. In
particular, two-stage approaches were not providing better solutions than deterministic MPC;
and discretized dynamic programming was too slow. Finally, the look-ahead approach computes
a feasible and reasonable solution from For instance, MPC is fully deterministic whereas SDDP
cuts. Although it does not beat MPC in this specific setting, the method shows promise as a
viable compromise between relaxing integrality and achieving fast computational time.
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To conclude, remember that we did not discuss the investment problem. Indeed, the return
on investment is difficult to compute, as it highly depends on decarbonization subsidies or tax
incentives as well as on the evolution of the energy markets. Recent events in Ukraine have
shown that energy prices are volatile and unpredictable, especially in the long term. However,
with conservative estimates, we obtain a return on investment of around 10% for solar parks.
In our setting, investment in storage is not profitable. Nevertheless, if we allow buying and
selling energy at the given prices, which is not completely realistic, the battery would be quite
profitable. Without reselling energy, the profitability of storage also depends on the demand
load: a high load requiring the machines to be on during peak prices would make the battery
profitable. These investment aspects would require further investigation.
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Chapter 4

A branch and bound framework for
MSbLPs
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In this chapter, we introduce a Branch-and-Bound (BB) framework that relies on the underlying
structure of scenario trees to solve Multistage Stochastic mixed-binary Linear Program (MSbLP)
leveraging ideas from classical BB methodology, Dynamic Programming (DP) for multistage
problem and especially the Stochastic Dual Dynamic Programming (SDDP) algorithm for MSLP.
The work presented in this section has been done in collaboration with Bernardo Freitas Paulo
da Costa1.

First, relying on graph theory [KV12], we define formally scenario trees and different subtrees
extracted from a scenario tree in Section 4.1. Then, we introduce in Section 4.2 a class of functions,
assignation functions, which transform the feasible set of binary variables in an MSbLP. Those
functions are fitted to BB methodologies [Mor+16]. Finally, in Section 4.3, we present some
specific assignation functions where SDDP can be combined with BB, leading to the algorithm
developed in Chapter 5 to solve MSbLP.

1Fundaçao Getulio Vargas
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4.1 Structuring scenario trees

In Chapter 2, we presented informally the scenario tree representing the uncertainties of an
MSbLP. In this section, we present a formal definition of scenario trees that allow us to explore
their structure. Through the definition of different subtrees of a scenario tree, we elaborate a
flexible framework to solve MSbLP, which relies on variants of the typical bellman operators we
presented in Chapter 2.

4.1.1 Elements of graph theory

In this preliminary section, we go over some notations and conventions from graph theory (see
[KV12]) that we use later to define formally a scenario tree T.

A weighted directed graph G := (N,A, w) is described by a set of nodes N, a set of arcs A, which
are ordered pair of nodes, and a function w : A → R assigning a weight to each arc in the graph.
If (ν, µ) ∈ A, we say that (ν, µ) leaves ν and enters µ: it is an outgoing arc of ν and an incoming
arc of µ. A path in G is a sequence of k nodes (ν1, . . . , νk) such that k > 1 and for all i ∈ [k − 1],
we can order the pair {νi, νi+1} so that it is in A. We say that the path (ν1, . . . , νk) connects ν1

and νk. In particular, a cycle is a path connecting ν and itself, and a graph containing no cycle
is called acyclic. Finally, we say that G is connected if, between each pair of nodes, there exists a
path.

A weighted directed tree T := (N,A, w) is a connected and acyclic weighted directed graph such
that all nodes have at most one incoming arc. By definition, a directed tree T has |N| − 1 arcs,
and we call root the only node r ∈ N which has no incoming arc. We say that T is r−rooted.
Then, all other nodes µ ∈ N \ {r} have exactly one incoming arc (ν, µ) and we denote a(µ) = ν
the parent of ν. By convention, a(r) = r. Similarly, we call children of a node ν the nodes
connected to ν by outgoing arcs i.e., C(ν) := {µ ∈ N | (ν, µ) ∈ A}. More generally, the children
of a node set S ⊂ N are C(S) := {µ ∈ N \ S | ∃ ν ∈ S, (ν, µ) ∈ A}. The depth of ν is defined
as the length of the unique path connecting r and ν, and denoted tν . We regroup all nodes of
same depth t into layers {Nt}t≥0 and N = ∪t≥0Nt. By convention, N0 = {r}. Then, note that
for a node ν ∈ Nt, a(ν) ∈ Nt−1 and C(ν) ⊂ Nt+1. We refer to the nodes with no children as
leaves of the tree, and we denote them L(T) = {ν ∈ N | C(ν) = ∅} ⊂ N. Finally, we say that a
weighted directed tree T := (N,A, w) is a scenario tree (see an example in Figure 4.1) if the
weight w takes value in [0, 1], and for each node ν ∈ N \L(T), we have

∑
µ∈C(ν)w(ν, µ) = 1.
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Figure 4.1: We give on this figure an example of a scenario tree T where N = {νi}i∈[31]. We
highlight in color the root and leaves of the tree. We read that a(ν3) = ν1 and C(ν3) = {ν8, ν9, ν10}.

In this chapter, we exploit the structure of a scenario tree T = (N,A, w) to decompose efficiently
a multistage stochastic program. Thus, we define here different class of subtrees that can be
extracted from the initial scenario tree T. To begin with, we call subtree T ′ = T

[
N ′
]

of T, the
weighted directed tree induced by N ′ ⊂ N i.e., T ′ = (N ′,A′, w′) with A′ = {(ν, µ) ∈ A | (ν, µ) ∈
N ′2} and w′ = w|A′ . Note that we cannot construct a subtree T ′ = T

[
N ′
]

for all node set
N ′. For instance, we cannot construct a subtree T

[
N ′
]
, of the scenario tree in Figure 4.1,

with N ′ = {r, ν9, ν2, ν13}, as the resulting graph is not connected. Further, a subtree T ′ is not
necessarily a scenario tree, depending on w′. In future sections, we always work on subtrees in
comparison with the initial scenario tree T. Thus, a(ν) and C(ν) always indicate the parent and
children of ν in T, and tν the depth of ν in T. Then the children of ν ∈ N ′ in the subtree are in
the set C(ν) ∩N ′. We can observe two examples of subtrees in Figure 4.2.
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Figure 4.2: Two examples of subtrees of T represented in Figure 4.1: on the left a ν3−rooted
subtree and on the right a ν2−rooted subtree. On this figure, we highlight, for a subtree, its root,
its children C(N ′), and the leaves of T that are in the subtree. Whereas the subtree on the right
preserves the structure of a scenario tree, the one on the left does not: w(ν3, ν10) +w(ν3, ν9) 6= 1.

We consider two categories of subtrees with convenient structures: the ν−extracted subtree, that
is the subtree stemming from a node ν up to the leaves; and subtrees constructed by pruning
branches of T as pruned subtrees. More precisely, we define the ν−extracted subtree T|ν := T

[
N|ν
]

as the ν−rooted subtree such that if a node µ is in N|ν , then its children are too i.e., C(µ) ⊂ N|ν .
In the specific case of ν−extracted subtrees, the structure of scenario tree is preserved (see an
example in Figure 4.3).
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Figure 4.3: The ν7−extracted subtree from T.

Further, by construction, C(N|ν) = ∅. A pruned subtree Tp := T
[
Np
]

is defined as a r−rooted
subtree, such that if a node ν is in Np, then its parent a(ν) is too. In particular, a pruned tree is
a scenario tree only if either all or none children of a node are in the subtree. For example, the
pruned tree represented in Figure 4.4 is not a scenario tree. A useful example of pruned trees
is the t−shortsighted subtree T1:t = T

[
N1:t

]
, where we cut all the layers NΩ

τ representing stages
τ > t, i.e., N1:t = ∪tτ=1NΩ

τ and C(N1:t) = NΩ
t+1.
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Figure 4.4: Example of a pruned tree of T which does not preserve the structure of a scenario
tree.

Having introduced properly scenario trees, we can now associate a multistage program to a
specific scenario tree.

4.1.2 Building a scenario tree

In multistage stochastic programming, at each stage, we optimize decisions that determine the
evolution of a dynamic system. This system is affected by a sequence of noises ξ[T ], where T is the
total number of stages. Each noise ξt takes value in a finite set Ξt and we denote Ω :=

∏
t∈[T ] Ξt.

We assume that these noises represent all the uncertainty in the problem at hand, with known
probability distribution, resulting in a probability space (Ω,A,P). Then, we define a scenario
ω ∈ Ω as a sequence of noise realization {ξt}t∈[T ]. In general, the scenario tree is informally
defined as the collection of all scenarios. Though we find it in the literature in slightly varying
forms, the formalism we develop here can be found in [SDR14].

Algorithm 8: Constructing recursively a scenario tree T.
1 NΩ = NΩ

0 = {r}, AΩ = ∅, wΩ : AΩ → R, T Ω := (NΩ,AΩ, wΩ)
2 for t = 1 . . . T do

// We construct a new layer NΩ
t .

3 for ν ∈ NΩ
t−1 do

4 NΩ
t = ∅

5 for ξt ∈ Ξt do
// We construct a child of ν.

6 µ = (ν, ξt)
// We update the scenario tree.

7 NΩ
t = NΩ

t ∪ {µ}
8 AΩ = AΩ ∪ {(ν, µ)}
9 wΩ(ν, µ) = P(ξt = ξt| ν )

10 N = N ∪Nt
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We construct the scenario tree T Ω = (NΩ,AΩ, wΩ), as defined in Section 4.1.1, that reflects the
multistage structure of the problem. At the beginning of the problem, we have no information
on the noises realization yet. This is represented by the root node r, and we define NΩ

0 = {r}.
Then, in stage t = 1, we uncover the noise realization of ξ1. For each possible realization ξ ∈ Ξ1,
we construct a node ν = (r, ξ) with parent a(ν) = r, containing the information now available.
All those nodes form the layer NΩ

1 =
{

(r, ξ), ξ ∈ Ξ1

}
representing stage 1. Further, we add

each arc (r, ν) for ν ∈ NΩ
1 to AΩ, and the weight on the arc is given by wΩ(r, ν) = P(ξ1 = ξ).

Moving to the next stage, t = 2, in addition of knowing what happened in stage 1, we discover
the noise realization of ξ2. For a noise realization ξ2 ∈ Ξ2, knowing ξ1 happened before, we
construct a node of the form ν = (µ, ξ2) with parent a(ν) = µ = (r, ξ1) ∈ NΩ

1 , and add (µ, ν) to
AΩ with weight wΩ(µ, ν) = P(ξ2 = ξ2|ξ1 = ξ1). Hence, we define the layer representing stage
2 as NΩ

2 =
{

(ν, ξ), ∈ N1 × Ξ2

}
i.e., all possible knowledge situation at t = 2. Recursively, we

construct for all stage t the layer NΩ
t ,

NΩ
t =

{
(ν, ξ) | ν ∈ Nt−1, ξ ∈ Ξt

}
as described in Algorithm 8.
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Figure 4.5: Example of a scenario tree TΩ

It follows that a node ν ∈ NΩ
t in the scenario tree T Ω contains all the information available up

to stage t, aligning with the non-anticipativity constraints (2.8e), which states that in ν we know
the past and present but not the future. Then, ν ∈ NΩ

t reads its ancestors’ information from the
root r:

ν = ( a(ν)︸︷︷︸
∈NΩ

t−1

, ξν) =

((
a(a(ν))︸ ︷︷ ︸
∈NΩ

t−2

, ξa(ν)

)
, ξν

)
,

where ξν ∈ Ξt and ξa(ν) ∈ Ξt−1. If we denote πν is the probability of being in node ν, we have:

πν = P(ξt = ξt, a(ν)) = P(ξt = ξt| a(ν) )πa(ν) = wΩ(a(ν), ν)πa(ν).
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By convention, πr = 1. Thus, each layer NΩ
t does represent clearly a stage of the problem, as it

contains the nodes representing all possible scenarios {ξkτ }τ∈[t] ∈
∏t
τ=1 Ξτ up to stage t.

We give an example of a small scenario tree in Figure 4.5, with nodes containing the information
accumulated over time. In this example, T = 4 and Ξ1 = {3, 5, 6}, Ξ2 = {1, 7}, Ξ3 = {3, 4, 5},
Ξ4 = {1, 4}. The probability law P can be retrieved from the weights w(µ, ν) on the figure.

4.1.3 Dynamic programming on a scenario tree

The extensive formulation (2.9) of an MSbLP, presented in Chapter 2, relies on the structure of
the scenario tree T Ω we build with Algorithm 8. In practice, the size of T Ω is very large, as it is
exponential in the number of stages, and the resulting MILP is intractable. Thus, by considering
a subproblem derived from a subtree T ⊂ T Ω of the initial scenario tree, we can obtain solvable
problems from which we hope to reconstruct a solution of Problem (2.8). We formulate the
subproblems (P Tx0

) of Problem (2.8) constructed from any ν0−rooted subtree T = T Ω
[
N
]
:

(P Tx0
) min

x,y,b

1

πν0

∑
ν∈N\{r}

πνLν(xa(ν), yν , bν , ξν) (4.1a)

xν = Fν(xa(ν), yν , bν , ξν) ⊂ Xν ∀ν ∈ N \ {r} (4.1b)

yν ∈ Yν(xa(ν), ξν) ∀ν ∈ N \ {r} (4.1c)

bν ∈ Bν(xa(ν), ξν) ∩ {0, 1}nb ∀ν ∈ N \ {r} (4.1d)

xa(ν0) = x0 (4.1e)

where ξν is the information unveiled in node ν. If T is r−rooted, the constraints in Problem (4.1)
hold for all nodes in the subtree except r. This is because we consider a setting where there are
no decisions at the root, before the first stage2. In Equation (4.1a), we recover the probability
πν|T of being in a node ν in the subtree T by dividing the probabilities by the probability of
being in node ν0. More specifically, if (ν0, ν1, . . . , νk, ν) is the unique path from ν0 to ν:

πν|T = w(νk, ν)
k−1∏
t=0

w(νt, νt+1) =
πν
πν0

.

Though this framework is abstract, we do fall back on Problem (2.8) by considering (P
T Ω

xinit). On

the one hand, for pruned subtrees Tp, solving (P
Tp
x0 ) amounts to assuming some decisions in the

future are unnecessary to construct an optimal policy. On the other hand, for ν−rooted subtrees
T, with ν of depth tν > 0, (P Tx0

) can be interpreted as assuming a certain scenario up to tν has
happened, resulting in state x0. In particular, with ν−extracted subtrees T|ν , we do not cut any
potential future scenarios {ξt}t∈[tν :T ]. In a multistage setting, we assume at a given node ν, the
whole information needed to make optimal decisions is contained in the state of the dynamic
system. Thus, we introduce the cost-to-go functions, {V̂ν}ν∈N , as the optimal values of problem

(P
T|ν
x ) from a node ν depending on the current state of the system x.

2However, we could adapt our formulation, to a problem with decisions at the root, by adding an initial stage
t = 0 with a static noise ξ0 = ξ0
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In the same way that we used Bellman’s DP principle to obtain recursions (2.11), we have:

V̂ν(x) = min
z,y,b

Lν(x, y, b, ξν) +
∑

µ∈C(ν)

w(ν, µ)V̂µ(z) (4.2a)

z = Fν(x, y, b, ξν) ⊂ Xν (4.2b)

y ∈ Yν(x, ξν) (4.2c)

b ∈ Bν(x, ξν) ∩ {0, 1}nb . (4.2d)

Vr(x0) =
∑
µ∈C(r)

w(r, µ)V̂µ(x0) (4.2e)

In comparison with Chapter 2, we make no assumption on independence of variables {ξt}t∈[T ].

Thus, the cost-to-go value V̂ν(x) for ν ∈ NΩ
t is the optimal cost from state x knowing all the

information contained in ν, in particular, knowing the noise realization ξν at t. Despite each
problem being, individually, small enough to be solved efficiently, the number of cost-to-go
functions to compute is as large as the scenario tree T Ω, making the dynamic formulation
intractable. Even with strong assumptions like stagewise independence (see Chapter 2), dynamic
programming is impractical due to the curse of dimensionality.

A natural simplification of a multistage program, with a very large number of stages T , is to
reduce the problem to a shorter horizon τ << T . This makes sense in a problem where decisions
made at t impact less and less the costs in future stages. This is what we propose in Chapter 3,
where we implicitly solve our problem reduced to a 2−shortsighted subtree. We retrieve a
forward policy with bellman operators that are associated to (P T1:2

x ). In this section, we leverage
the definitions introduced in Section 4.1.1 to generalize bellman operators Chapter 3 to any
ν0−rooted subtree T = (N,A, w) ⊂ T Ω. Assuming we have approximated cost-to-go functions
{R̂ν}ν∈NΩ , we define the T−backward operator B̂T({R̂µ}µ∈C(N)):

B̂T({R̂µ}µ∈C(N))(x0) = Min
x,y,b

1

πν0

[ ∑
ν∈N\{r}

πνLν(xa(ν), yν , bν , ξν) +
∑

µ∈C(N)

πµR̂µ(xa(µ))

]
xν = Fν(xa(ν), yν , bν , ξν) ⊂ Xν ∀ν ∈ N \ {r} (4.3a)

yν ∈ Yν(xa(ν), ξν) ∀ν ∈ N \ {r} (4.3b)

bν ∈ Bν(xa(ν), ξν) ∩ {0, 1}nb ∀ν ∈ N \ {r} (4.3c)

xa(ν0) = x0 (4.3d)

In particular, with a ν0−rooted subtree T = T Ω
[
{ν0}

]
, containing only node ν0, B̂T({V̂µ}µ∈C(N))(x)

is equivalent to the problem formulated in (4.2). More generally, for any ν0−rooted sub-
tree T = T Ω

[
N
]
, if we know the true cost-to-go functions {V̂µ}µ∈C(N), then we have V̂ν =

B̂T({V̂µ}µ∈C(N)). To simulate a policy on any scenario, we derive the T−forward operator
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associated to B̂T({R̂µ}µ∈C(N)):

F̂T({R̂µ}µ∈C(N))(x0) ∈ arg min
x,y,b

1

πν0

[ ∑
ν∈N\{r}

πνLν(xa(ν), yν , bν , ξν) +
∑

µ∈C(N)

πµR̂µ(xa(µ))

]
xν = Fν(xa(ν), yν , bν , ξν) ⊂ Xν ∀ν ∈ N \ {r} (4.4a)

yν ∈ Yν(xa(ν), ξν) ∀ν ∈ N \ {r} (4.4b)

bν ∈ Bν(xa(ν), ξν) ∩ {0, 1}nb ∀ν ∈ N \ {r} (4.4c)

xa(ν0) = x0 (4.4d)

With these operators, we have a way to compare the policies induced by different approximations
of the cost-to-go functions. There are two main challenges in this approach: first, deciding which
subtree T leads to good policies with the T-operators; second, which approximations {R̂µ} to
use. Then, assuming {R̂µ} are piecewise linear, we obtain an MILP to solve, where all the
information and integrality constraints are considered on a given subtree T. Our goal is to find
the right trade-off to compute a good solution, meaning that when we simulate the policy of the
approximated cost-to-go functions with T−forward operators (4.4), the solution obtained has a
reasonable cost.

This framework gives the flexibility of choosing the size of the subproblems we solve. On the one
side, with the smallest subproblems formulated with subtrees containing only node Tν = T Ω

[
{ν}
]
,

and with stagewise independence assumptions, we fall back on classic dynamic programming
methods presented in Chapter 2 i.e., B̂Tν (R)(x) = B̂tν (R)(x, ξν). Then, the method requires
high-quality approximations {R̂µ}. On the other side, the largest subtree we can choose is the
initial scenario tree, and B̂T Ω(0) is equivalent to the extensive formulation of Problem (2.8).

There, no approximated functions are needed as C(NΩ) = ∅. This is also the case with large
subtrees such as ν−extracted subtrees T|ν , where C(NΩ

|ν ) = ∅. In between, with a pruned subtree
Tp of medium size, we might have an MILP of reasonable size. Assuming the decisions made at
stage t do not affect so much the decisions in the far future (τ � t), and with a rolling horizon
heuristic, we hope to find good policies in a reasonable time by solving the problem on a pruned
tree.

4.1.4 Stagewise independence

We presented a generic formulation for MSbLPs for any probability space Ω that can be
represented with a scenario tree. In Chapter 2, we presented the specific case where the random
variables {ξt}t∈[T ] are stagewise independent, i.e., for any scenario {ξτ}τ∈[t] up to stage t, the
probability of having noise realization ξt ∈ Ξt is the same. In this case, many cost-to-go functions
{V̂ν}ν∈N are redundant. Indeed, for two nodes of the same layer NΩ

t in the scenario tree, the
subproblems to solve are the same as long as the information unveiled in stage t is the same:

V̂ν(x) = V̂ν′(x) = V̂t(x, ξ) ∀x,∀ν, ν ′ ∈ NΩ
t with ξν = ξν′ = ξ ∈ Ξt. (4.5a)

Leveraging the bellman recursive equations (4.2), we can reduce the number of cost-to-go functions
to one per stage, leading to the cost-to-go functions presented in Chapter 2:∑

µ∈C(ν)

w(ν, µ)V̂µ(x) =
∑

µ∈C(ν)

P(ξt+1 = ξµ)V̂t+1(x, ξµ) (4.5b)

= E[V̂t+1(x, ξt+1)] (4.5c)

= Vt+1(x) ∀ν ∈ NΩ
t , ∀y. (4.5d)
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Making the hypothesis of stagewise independence thus reduces significantly the computational
burden of solving Problem (2.9) with dynamic programming principles. In this section, we
generalize the idea of stagewise independence to t−independence: in a t−independent multistage
stochastic program, no assumptions are made on the random variables up to stage t, and from
stage t+ 1 to T , the random variables are stagewise independent.

To that end, we want to compare subtrees from a given layer of the tree, with no knowledge of
the past. Those subtrees should look like ν−extracted subtrees T|ν , except those contain the

information of the path leading to ν in T Ω. Thus, we define the ν−uprooted subtree T\ν , as
a scenario tree with the structure of T|ν from which we have removed the information in a(ν).
The root r of T\ν contains the noise realization revealed in node ν, and form the first layer of
the subtree {r} = (r, ξν) (recall that by convention a(r) = r). Then, the second layer consists
of nodes {µ = (r, ξµ), µ ∈ C(ν)}. Recursively, we construct T\ν with an analog algorithm of
Algorithm 8.

We can observe the difference between T|ν and T\ν in Figures 4.6 and 4.7. The structure of
ν-uprooted subtrees allow us to define t−independence in Definition 1.

ν4 = ((r, 3), 1)

ν9 = (((r, 3), 1), 3)

ν20 = ((((r, 3), 1), 3), 1)

ν21 = ((((r, 3), 1), 3), 4)

ν10 = (((r, 3), 1), 4)

ν11 = (((r, 3), 1), 5)

ν22 = ((((r, 3), 1), 5), 1)

ν23 = ((((r, 3), 1), 5), 4)

Figure 4.6: Example of an extracted subtree T|ν4
from scenario tree in Figure 4.5.

(r, 1)

ν9 = ((r, 1), 3)

ν20 = ((((r, 3), 1), 3), 1)

ν21 = (((r, 1), 3), 4)

ν10 = ((r, 1), 4)

ν11 = ((r, 1), 5)

ν22 = (((r, 1), 5), 1)

ν23 = (((r, 1), 5), 4)

Figure 4.7: Example of an uprooted-subtree: T\ν4
of the scenario tree in Figure 4.5.

Definition 1. We say that the scenario tree T is t−independent if for all τ ≥ t and for all
nodes ν, ν ′ ∈ NΩ

τ ∩N, we have T\ν = T\ν′ . In particular, a 1−independent scenario tree models a
problem with stagewise independence assumptions.

The notion of t−independence, with t > 1, is a trade-off between simplifying too much the
problem by assuming noises are stagewise independent and reducing the computational burden
to solve the problem.

Proposition 1. If the scenario tree T is t−independent, then there is a unique cost-to-go function
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representing stage t+ 1:∑
µ∈C(ν)

w(ν, µ)V̂µ(x) =
∑

µ∈C(ν)

P(ξt+1 = ξµ)V̂t+1(x, ξµ) = Vt+1(x), ∀ν ∈ NΩ
t .

Thus, t-independence allows the use of an efficient DP approach, that is still subject to the
curse of (state) dimensionality. However, we have seen that SDDP can push this limit if the
state is continuous. For example, under stagewise independence assumptions, we can solve the
continuous relaxation of Problem (2.8) with SDDP and retrieve an approximation of each value
function V̂ SDDP

t . Then, by Proposition 1, the problem is τ + 1-independent and there is a unique
cost-to-go function representing τ + 1, thus the T1:τ−backward operator BT1:τ ({V̂ SDDP

τ+1 }) is the
same operator as the one introduced in Chapter 3.

With branch and bound methodology in mind, we present, in the next section, tools for relaxing
integrality constraints. From now on, we assume the MSbLP at hand is stagewise independent.

4.2 Assignation functions

In MSbLP, with stagewise independence – which is assumed from now on – the main difficulty
comes from the binary variables. Indeed, if we suppress integrality constraints, we obtain a MSLP
which can be efficiently solved with SDDP. There are two main ways to suppress integrality
constraints: either we relax them and make binary variables continuous, or we fix the variables
to a fixed value (0 or 1). Thus, we would like to reduce the problem to multiple continuous
subproblems by resorting to BB methods. To this end, this section introduces specific functions
that reduce, enforce, or extend the feasibility set of binary variables.

4.2.1 Definition and parameterized Dynamic Programming

We present a generic framework that allows for both relaxing integrality constraints and reducing
them by fixing the value of binary variables. This allows us to explore different options for
best modifying the problem’s feasibility set depending on its structure. Further, the framework
encompasses all approximations we can make of an MSbLP by relaxing or fixing integrality
constraints.

Definition 2. An assignation function b : T → {{0}, {1}, {0, 1}, [0, 1]}nb is a function that
assigns to each binary variables, in each node of the tree, a new feasible space. For each binary
variable, there are three possibilities:

1. the feasibility space is reduced to a single value (0 or 1): the variable becomes a constant;

2. the feasibility space remains the same: the variable stays binary;

3. the feasibility space is relaxed: the variable is now continuous.

Then, we define the parameterized scenario tree T Ω,b as a scenario tree where the definition of a
node is extended with the feasibility set assigned by b:

ν = (a(ν), b(ν), ξν).

For example, we consider the scenario tree T Ω in Figure 4.8, which has 4 stages and |Ξ1| =
3, |Ξ2| = |Ξ3| = |Ξ4| = 2. If the number of binary variables per node nb = 2, we represent a
parameterized tree T Ω,b in Figure 4.9. To alleviate the figure, we only write the assignation value
in each node.
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r

ν1 = (r, ξ1
1)

ν4 = (ν1, ξ1
2)

ν11 = (ν4, ξ1
3)

ν12 = (ν4, ξ2
3)

ν5 = (ν1, ξ2
2)

ν13 = (ν5, ξ1
3)

ν14 = (ν5, ξ2
3)

ν2 = (r, ξ2
1)

ν6 = (ν2, ξ1
2)

ν15 = (ν6, ξ1
3)

ν16 = (ν6, ξ2
3)

ν7 = (ν2, ξ2
2)

ν17 = (ν7, ξ1
3)

ν18 = (ν7, ξ2
3)

ν3 = (r, ξ3
1)

ν9 = (ν3, ξ1
2)

ν19 = (ν9, ξ1
3)

ν20 = (ν9, ξ2
3)

ν10 = (ν3, ξ2
2)

ν21 = (ν10, ξ1
3)

ν22 = (ν10, ξ2
3)

Figure 4.8: Example of a scenario tree T Ω.

We observe that the assignation operation on the scenario tree in Figure 4.9 does not preserve
stagewise independence. Indeed, the binary assignation in node ν9 is different then the one in ν7,
and thus the cost-to-go functions from node ν3 and node ν2 might differ.

r

(0, [0, 1])

(1, 1)

(0, [0, 1])

({0, 1}, 1)

({0, 1}, [0, 1])

(0, [0, 1])

({0, 1}, 1)

(0, 1)

({0; 1}, {0, 1})
(0, [0, 1])

({0, 1}, 1)

([0, 1], 1)

(0, [0, 1])

({0, 1}, 1)

({0, 1}, [0, 1])

(1, 1)

(0, [0, 1])

({0, 1}, 1)

([0, 1], 0)

(0, [0, 1])

({0, 1}, 1)

Figure 4.9: Example of a parameterized scenario subtree.

Finally, we adapt the formulation (4.1) of an MSbLP on a subtree to a parameterized subtree
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T b :

(P T
b

x0
) min

x,y,b

1

πν0

∑
ν∈N\{r}

πνLtν (xa(ν), yν , bν , ξν) (4.6a)

xν = Ftν (xa(ν), yν , bν , ξν) ∀ν ∈ N \ {r} (4.6b)

yν ∈ Utν (xa(ν), ξν) ∀ν ∈ N \ {r} (4.6c)

bν ∈ b(ν) ∀ν ∈ N \ {r} (4.6d)

xa(ν0) = x0. (4.6e)

The only difference between Problem (4.6) and Problem (4.1), for a given subtree T, lies in the
constraints (4.6d), where we modify the feasible set of binary variables. Further, under stagewise
independence assumptions, the dynamic and instantaneous costs only depend on the stage tν ,
thus we simplify the objective(4.6a) and dynamic constraints(4.6b). However, as illustrated in
Figure 4.9, the problem parameterized by b is not necessarily stagewise independent. Thus, we
introduce the parameterized cost-to-go functions {V̂ bν }ν∈N which represent the optimal cost of the
parameterized problem from a node ν. Then, we can adapt the T−backward operators (5.4) to
the parameterized T b−backward operators B̂T b by changing the feasible set of binary variables:

B̂T b ({R̂µ}µ∈C(N))(x0) = Min
x,y,b

1

πν0

[ ∑
ν∈N\{r}

πνLtν (xa(ν), yν , bν , ξν) +
∑

µ∈C(N)

πµR̂µ(xa(µ))

]
xν = Ftν (xa(ν), yν , bν , ξν) ⊂ Xtν ∀ν ∈ N \ {r} (4.7a)

yν ∈ Ytν (xa(ν), ξν) ∀ν ∈ N \ {r} (4.7b)

b ∈ b(ν) ∀ν ∈ N \ {r} (4.7c)

xa(ν0) = x0. (4.7d)

Finally, by adapting similarly the constraints, we derive the associated parameterized T b−forward
operators F̂T b .

Having introduced assignation functions and parameterized scenario trees, we now present some
properties of some particular assignation functions. Remember that our primary goal is to
leverage SDDP cuts that we can quickly obtain and that approximate well the continuous
relaxation of an MSbLP. Note that these assignation functions allow us to generalize a framework
containing many approximations of Problem (2.8).

4.2.2 Some specific assignation functions

In all the assignation functions that can approximate Problem (2.8), we first study those that
give us lower and upper bounds on the optimal value of the problem.

A natural approximation of MSbLP is obtained by relaxing completely integrality constraints.
The resulting problem is a multistage stochastic linear program MSLP which can be solved
efficiently with SDDP. This specific case is covered by a unique assignation function that we call
the relaxed-assignation br, which relaxes all integrality constraints of the problem:

b
r : T → [0, 1]nb . (4.8a)

Then, we can run SDDP to solve the problem modeled by the parameterized scenario tree T Ω,br .
We obtain cuts converging to the true cost-to-go V̂ b

r

ν at each node ν ∈ T Ω,br , and in particular
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to the optimal value of the parameterized problem V̂ b
r

r (xinit), which is a valid lower-bound on
the optimal value V̂r(xinit) of Problem (2.8).

We can generalize a category of assignation functions yielding lower-bounds on the true value
of the problem. A lower-assignation blb is an assignation function that partially relaxes the
integrality constraints of the problem and enforces the rest of them:

b
lb : T → {{0, 1}, [0, 1]}nb . (4.8b)

For any assignation function blb, the problem modeled on T b
lb

is a relaxation of Problem (2.8)
and we have:

V̂ b
r

r (xinit) ≤ V̂ b
lb

r (xinit) ≤ V̂r(xinit).

However, solving (P
T b

lb

x0 ) is not straightforward and can be as hard as solving Problem (2.8).
We present in Chapter 5 some particular cases of lower-assignations where we can compute

V̂ b
lb

r (xinit).

On the other hand, we now present assignation functions that give upper-bounds on the problem.
We call fixed-assignation bf an assignation function where all binary variables are fixed to either
0 or 1:

b
f : T → {{0}, {1}}nb . (4.8c)

For any fixed-assignation bf , either the problem modeled with T Ω,bf has a solution which is

feasible for Problem (2.8) and V̂r(xinit) ≤ V̂ b
f

r (xinit); or the problem is infeasible, V̂ b
f

r (xinit) = inf,

and the inequality holds. In particular, for any fixed-assignation bf0 ∈ {{0}, {1}}|NΩ|×nb ,

V̂r(xinit) = min
b
f∈{{0},{1}}|NΩ|×nb

V̂ b
f

r (xinit) ≤ V̂ b
f0

r (xinit).

Computing V̂ b
f

r (xinit) is not easy: indeed, even if the problem is continuous, to solve it with

SDDP, T b
f

has to be stagewise independent.

We can enlarge the class of assignation functions yielding upper-bounds on the true value of the
problem to upper-assignation bub i.e., assignation function that either fixes binary variables to 0
or 1 or keeps integrality constraints

b
ub : T → {{0}, {1}, {0, 1}}nb . (4.8d)

In particular, a fixed-assignation function is an upper-assignation function. The problems
parameterized with upper-assignation functions are also hard to solve. Finally, for any upper-
assignation function bub:

V̂r(xinit) ≤ V̂ b
ub

r (xinit).

As the number of assignation functions is very large, we naturally turn to BB methods to decide
which feasibility set to assign to each node.

4.2.3 A Branch-and-Bound methodology

The Branch-and-Bound (BB) algorithmic framework encapsulates a class of algorithms that
essentially follow the same procedure. Consider the problem (P) Minx∈X f(x), of minimizing a
function f over a finite set X. As X is finite, the simplest approach would be to enumerate all
elements of X and evaluate f on each. The concept of BB is to consider all elements without
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having to evaluate f on each by the use of bounding tools. More precisely, we structure the
exploration of X by using a specific tree that we call BB-tree to avoid confusion with the scenario
tree. In the BB-tree, a BB-vertex corresponds to a subset X ′ ⊂ X, with the corresponding
subproblem (SP) : Minx∈X′ f(x). From a BB-vertex we generate children by partitioning the
feasible set X ′: this is referred to as branching. For each BB-vertex we assume that we can
compute a lower bound. If this lower bound is higher than the current best upper bound (the
value of the best solution x ∈ X evaluated so far), we know that there is no use in refining further
this node: this is pruning.

We distinguish three main ingredients that are to be specified in a BB algorithm: first, the search
strategy, i.e., in which order to explore the BB-tree; second, the branching strategy, i.e., the
way we partition the feasible set of a given vertex to produce children; third, the pruning rules,
i.e., rules to decide when to stop exploring areas of the tree. Depending on these three elements,
the resulting algorithm, generalized in Algorithm 9, can be more or less efficient.

Algorithm 9: Branch-and-Bound procedure.

1 Input : initial feasible set X, vertices to explore V = {X}, current solution x ∈ X ;
2 while V 6= ∅ do
3 Select v ∈ V corresponding to a subproblem ; // search strategy

4 if we can find x′ ∈ v such that f(x′) < f(x) then // heuristic

5 Set x = x′;

6 Compute lower-bound f(v) ; // bounding

7 if f(v) ≤ f(x̄) then // v cannot be pruned

8 Partition V into v1, . . . , vk; ; // branching strategy

9 Insert v1, . . . , vk in V ;

10 Remove v from V ;

11 Return x;

BB methods are particularly suitable for problems with binary variables. We consider a binary
problem (P ) : Minx∈X⊂{0,1}n f(x). A BB-vertex v in the BB-tree corresponds to a subproblem
(SP ) : Minx∈v⊂X f(x) where some binary variables have been fixed i.e., v ⊆ {0, 1}n−n0−n1 ×
{0}n0 × {1}n1 . Then, a natural branching strategy from BB-vertex v is to choose xk unfixed in
v and to fix either xk = 0 or xk = 1. Further, a lower-bound can be computed by solving the
continuous relaxation of (SP ). We precise the BB procedure for the binary case in Algorithm 10.

Due to the structure of the assignation functions b introduced in this section, we want to
derive an algorithm inspired from BB to find the optimal one b?. Whereas in BB, we look for
the optimal solution of a problem, we look for the assignation b that gives the best solvable
approximation of Problem (2.8). Thus, the goal is slightly different, but we can adapt it by
choosing suitable pruning and bounding strategies. Starting from the initial assignation of
Problem (2.8) i.e., bint(T Ω) = {0, 1}|N|×nb , we progressively change the assignation in a BB
pattern. A BB-vertex v corresponds to an assignation function bv, where the assignation of
nodes Nf ⊂ NΩ has been modified. From a vertex v, we branch by: first, choosing a node
ν ∈ NΩ \ Nf , among those not considered yet; then, generating a child u of v such that
bu(ν) ∈

{
{0}, {1}, [0, 1]

}nb and bu(µ) = bv(µ) for µ 6= ν.

We illustrate in Figure 4.10 this BB methodology to decide on an assignation function applied to
the scenario tree in Figure 4.8. To simplify the illustration, we only consider 1 binary variable
per node. We observe an example of branching from node v where we have already fixed the
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Algorithm 10: B&B procedure for binary problems.

1 Input : initial feasible set X ⊂ {0, 1}n, vertices to explore V = {X}, current solution x ∈ X
;

2 while V 6= ∅ do
3 Select a vertex v ∈ V ; // search strategy

4 if we can find x′ ∈ v such that f(x′) < f(x) then // heuristic

5 Set x = x′;

6 Get lower bound f(v) by solving the continuous relaxation of (SP ) ; // bounding

7 if f(v) ≤ f(x̄) then // v cannot be pruned

8 Choose xk unfixed in v; // binary branching strategy

9 Insert v ∩ {xk = 0} and v ∩ {xk = 1} in V ;

10 Remove v from V ;

11 Return x;

assignation of nodes Nf = {ν1, ν4, ν9, ν16, ν22} in Figure 4.10. From node v, with a given search
strategy, we choose a node on which to branch: here ν6. We generate three children corresponding
to potential assignation of ν6: a fixed value 0, 1, or relaxation [0, 1]. The case where ν6 stays
binary i.e., {0, 1}, is considered by not branching on node ν6. It is worth pointing out that a
natural search order on the nodes is one that, starting from the root r, corresponds to a pruned
subtree.

v : bv

Nf = {ν1, ν4, ν9, ν16, ν22}

u1 : bu1(ν6) = {0}

w1 : bw1(ν18) = {0}

w2 : bw2(ν18) = {1}

w3 : bw3(ν18) = [0, 1]

u2 : bu2(ν6) = {1}

u3 : bu3(ν6) = [0, 1]

Figure 4.10: A B&B method to construct an assignation function

One of the main challenges we have here is to generate the bounds or find solution with any
assignation function (see Section 4.2.2). However, we know that in some cases, for example with
the continuous assignation bc, we can solve the parameterized problem with SDDP. In the next

section, we give conditions under which we can solve (P
T b
xinit) with SDDP.

4.3 Merging with SDDP

In order to reduce the computational burden of solving Problem (2.8), we look for ways to use
the cuts computed with SDDP. Depending on the assignation function b, we might be able to
approximate portions of the problem with SDDP, and alleviate the complexity of the branch and
bound previously presented. In this section, we first discuss the conditions under which we can
solve a b−parameterized problem with SDDP. We then present a particular class of assignation
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functions that lead to an efficient branch-and-bound algorithm leveraging SDDP cuts.

4.3.1 Condition for an assignation function to be compatible with SDDP

SDDP is an algorithm that can efficiently solve Multistage Stochastic Linear Program (MSLP)
with continuous variables and under stagewise independence assumptions. Thus, to solve the
parameterized problem given by T b , the resulting subproblem has to be continuous and stagewise
independent. Hence, we look upon interesting properties on assignation functions.

On the one side, we introduce a continuous-assignation bc as an assignation function where all
binary variables are either fixed or relaxed:

b
c : T → {{0}, {1}, [0, 1]}nb .

Then, for any subtree T, the bc-parameterized problem (P
T b
x0 ) is continuous.

On the other side, we define t−symmetry for assignation functions in Definition 3, which is an
analog of t−independence (see Definition 1).

Definition 3. We say that the assignation function b is t−symmetric on subtree T if for all
τ ≥ t and for all nodes ν, ν ′ in T of depth τ (i.e., ν, ν ′ ∈ NΩ

τ ∩N, for all ξτ+1 ∈ Ξτ+1), we have
b((ν, ξτ+1)) = b((ν ′, ξτ+1)). In other words, for nodes of a same layer and with same current
noise realization, the assignation given by b is the same.

Further, if T b is ν−rooted with tν = t and b is t−symmetric, then T b is stagewise independent.
For instance, in Figure 4.9, the assignation function is 2−independent, but not 1−independent.
Thus, the parameterized problem corresponding to the figure cannot be solved with SDDP.

r

(0, [0, 1])

(1, 1)

(0, [0, 1])

({0, 1}, 1)

([0, 1], 0)

(0, [0, 1])

({0, 1}, 1)

(0, 1)

(1, 1)

(0, [0, 1])

({0, 1}, 1)

([0, 1], 0)

(0, [0, 1])

({0, 1}, 1)

({0, 1}, [0, 1])

(1, 1)

(0, [0, 1])

({0, 1}, 1)

([0, 1], 0)

(0, [0, 1])

({0, 1}, 1)

Figure 4.11: Example of a parameterized subtree which preserves stagewise independence.

In opposition, we give an example on Figure 4.11 of an assignation function that is 1−independent
on the same subtree. However, this assignation is not continuous, thus we cannot solve the
problem with SDDP.
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We give sufficient conditions in Proposition 2 for a parameterized problem to be solved with
SDDP.

Proposition 2. Let T = T Ω[N] be a ν−rooted subtree, and b an assignation function. If b is

continuous and tν−symmetric, then we can solve (P
T b
x0 ) with SDDP.

Having established a class of assignation functions that are compatible with SDDP, we present a
particular case, with a convenient structure for branch-and-bound, in the next section.

4.3.2 Branch and Bound for lower assignation function

As we cannot solve exactly Problem (2.8), our goal is to find a good approximation. To that
end, in Section 4.2, we introduced assignation functions b that parameterize Problem (2.8). We
proposed in Section 4.2.3 a branch-and-bound methodology to choose b, though most of the time
the parameterized problems are still too hard to solve.

In the specific case of finding the best lower-assignation functions blb(4.8b), for each binary
variable bk in node ν, we have to decide if we relax the integrality on bk or not. In other words,

we try to assess how important each binary variable in the problem is. Recall that V̂ b
lb

r (xinit) is
a lower-bound on Problem (2.8). Then, we can say a lower-assignation blb1 is better than blb2 if

V̂
b
lb
1

r (xinit) > V̂
b
lb
2

r (xinit). The problem of finding the best lower-assignation blb can be formulated
as

Max
z

V̂ b
lb

r (xinit) (4.9a)

zkν ∈ {0, 1} ∀ν ∈ NΩ, ∀k ∈ [nb] (4.9b)

b
lb(ν)k =

{
{0, 1} if zkν = 1

[0, 1] otherwise.
∀k ∈ [nb] (4.9c)

The optimal value of Problem (4.9) is obviously to keep all integrality constraints i.e., z = 1.
However, with specific stopping rule for the BB Algorithm 10, we hope to find a good assignation
yielding a solvable approximation of Problem(2.8). Next, we introduce assignation functions that
are lower-assignation suited to Algorithm 10 as mentioned here, but that also follow conditions
in Section 4.3.1 allowing for combining BB with SDDP.

4.3.3 Assignation induced by a pruned subtree

If we branch in a particular order on the nodes, we obtain problems that we can simplify by
approximating whole sections of the scenario tree with SDDP cuts. More specifically, if we
consider, for a node ν, an assignation function b that is continuous and tν symmetric on T|ν , we can

solve (P
T|ν
x0 ) with SDDP by Proposition 2. In other words, if all descendants of ν are continuously

relaxed, they model a multistage stochastic continuous sub-problem of Problem (2.8), solvable
with SDDP. Thus, the whole portion of the scenario tree corresponding to T|ν is simplified and
can easily be approximated.

Relying on the structure of a pruned subtree Tp, we obtain a natural separation of the nodes
in T Ω such that all subtrees that have been pruned can be solved with SDDP, and the rest
as a classic MILP. We define a partially relaxed-assignation bTp : T → {[0, 1], {0, 1}}nb as an
assignation function such that

b
Tp(ν) =

{
{0, 1} if ν ∈ Tp,
[0, 1] otherwise.
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r

ν1

ν4
ν11

ν12

ν5
ν13

ν14

ν2

ν6
ν15

ν16

ν7
ν17

ν18

ν3

ν9
ν19

ν20

ν10
ν21

ν22

bTp(ν) = {0, 1}

bTp(ν) = [0, 1]

r

ν1

ν4
ν11

ν12

ν5

ν2

ν6

ν7
ν17

ν18

ν3

V̂ SDDP
tν

Figure 4.12: Example of a scenario tree parameterized with a partially relaxed-assignation
function bTp , based on pruned subtree Tp. On the right, we illustrate the problem’s reduction in
size with nodes µ in circles when we replace the model with SDDP cuts that approximate the
remaining problem on T|µ.

Let Tp = T Ω[Np] be a pruned subtree and bTp a partially relaxed-assignation, we can develop a

method to solve (P
T Ω,b

Tp

xinit ). First, for a node ν ∈ C(Np), we can approximate V̂ b
r

ν (x) = V̂ b
r

tν (x, ξν)
(recall that we are under stagewise independence assumptions) with cuts generated by SDDP.
Then, the Tp−backward operator B̂Tp({V SDDP

µ }µ∈C(N))(xinit) is a classic MILP that we can
solve if Tp is of reasonable size. Indeed, instead of having variables and constraints for all nodes
ν ∈ NΩ \ Np, we model the cost-to-go from ν ∈ C(Np) with SDDP cuts, and thus, the model’s
size is considerably reduced, see an example in Figure 4.12.

Conclusion

In this chapter, we discussed a generic framework to apply BB methods to solving MSbLP,
relying on SDDP to (approximately) solve the linear relaxation at each step of the BB tree–
which would would otherwise be intractable. Solving the partial relaxation obtained by mixing
both technologies implies non-trivial constraints stemming from the scenario tree structure on
the searching and branching rules. While the use of assignation functions might appear quite
abstract, we develop in the following chapter a reasonably intuitive case that offers a full-fledged
methodology to solve MSbLP.
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Chapter 5

A growing tree algorithm for solving
MSbLPs
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In the previous chapter, we elaborated a complex and abstract framework to explore various ways
to approximate Multistage Stochastic mixed-binary Linear Program (MSbLP). This framework
enabled us to understand better how we could merge branch-and-bound methodologies with the
continuous relaxation approximations given by SDDP. To that end, we have introduced a specific
way to approximate the problem, with partially relaxed-assignations bTp , where Tp is a pruned
subtree of the initial scenario tree. In this chapter, we propose a branch-and-bound algorithm
to solve an MSbLP derived from those specific assignation functions. As a result, we obtain a
class of approximated problems that can be efficiently solved, and from which we reconstruct a

97
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solution of the MSbLP. The work presented in this section has been done in collaboration with
Bernardo Freitas Paulo da Costa1 and Merve Bodur2.

5.1 Literature Review

Multistage Stochastic mixed-binary Linear Program (MSbLP) can model a broad range of
complex problems, such as hydro power scheduling ([PP85],[Hje+19]) and unit commitment
([Bar+06],[TKW00]), which are both large-scale and subject to uncertainties. Despite extensive
study, these problems remain challenging due to the need to manage integer variables while
addressing decision-making under uncertainty. Currently, most approaches involve approximating
one or both of these aspects. For a general introduction to stochastic programming, from a
mathematical programming point of view, we refer to Birge and Louveaux’s book [BL97].

Decomposition algorithms have been developed for 2−stage stochastic programs and later
extended to the multistage case. For example, Progressive-Hedging (PH) [RW91] is an augmented
Lagrangian decomposition where the non-anticipativity constraints are relaxed. The Lagrangian
coefficients penalizing a non-anticipativity violation are updated by solving a deterministic
program per scenario. The method extends straightforwardly to multistage programs but is
limited by the number of scenarios, hence the number of stages. The algorithm is based on
convex optimization tools, but the non-convex case, in particular with binary variables, has been
studied in [HLW01] where PH is used as a meta-heuristic.

Alternatively, Benders decomposition [Ben62] has been adapted to stochastic programs under
the name L-shaped method [SW69]. It decomposes the problem into a master problem– with
first-stage decisions – and slave problems– with second-stage decisions, parameterized by the
first-stage decisions. If the slave problems are convex, they can be approximated with cuts using
dual tools. Then, the master problem is iteratively updated with new cuts approximating each
slave problem. These methods can directly be extended to the multistage case [Bir85b], as long
as the number of scenarios remains reasonable, which means having a small horizon.

Benders decomposition allows integer variables in the master problem. Thus, in the case of a
multistage program with integer variables in each stage, a possibility is to relocate all integer
variables of an MSiLP in the first stage [CBS23]. Then, the slave problems are continuous and
can be exactly approximated (actually, Castro, Bodur, and Song use SDDP, described next, in
their paper to solve them). Additionally, for tractability, we can reduce the number of integer
variables by adding information constraints. Further, two-stage linear decision rules can be
considered to reduce the number of integer variables to optimize. Indeed, an approach to make
MSiLP easier to solve is to restrict the policies with linear decision rules that lead to integral
decisions [DBL24].

With some additional assumptions about the noise structure, we can leverage Dynamic Program-
ming (DP) based methods to tackle large horizon instances of MSLP. For example, if we assume
noises are stagewise independent, the cost-to-go functions only depend on time and state, which
alleviate the computational burden of SDP. Further, in the case of Markov chains, we can handle
the problem similarly by expanding the state with information on the previous noise realization
[LS19]. Then, the naive approach consists in discretizing the state and estimating the cost-to-go
functions in each discretization point – see Section 2.3.2. However, the approach remains limited
by the curse-of-dimensionality when the state dimension increases (say not larger than 4 or 5).

1Fundação Getulio Vargas
2University of Edinburgh



5.1. LITERATURE REVIEW 99

Instead of discretizing a priori the state space and estimating the cost-to-go from local interpola-
tion, we can use structural information of the cost-to-go function to get global estimation and
automatically adapt the discretization point. This leads to a broad class of algorithms, captured
under the framework of Trajectory Following Dynamic Programming (TFDP) in [FL23]. Those
algorithms iteratively refine estimates of the cost-to-go functions. More precisely, they iterate
over a forward pass, where they select a trajectory of state points; and a backward pass where
they compute cuts to improve the cost-to-go estimations at those selected points. More precisely,
at iteration k, a system trajectory xk[T ] is computed with forward operators (2.13) using the

current cost-to-go approximations V k−1
[T ] . The cost-to-go approximations V k−1

[T ] are then refined

with new cuts derived from incoming state xkt . The primary difference between these algorithms
is the type of cuts they generate.

One of the most popular and efficient algorithms in TFDPs is Stochastic Dual Dynamic Program-
ming (SDDP) [PP91], which is a randomized version of nested-Benders decomposition introduced
in 1991 to manage Brazil’s large hydrothermal system, and continues to be widely used today.
SDDP is designed to solve Multistage Stochastic Linear Program (MSLP), characterized by their
convex and continuous nature. This structure allows for the computation of Benders cuts; in
the backward pass, we solve the dual problem of backward operators (2.12) to generate a lower
approximation of cost-to-go functions. The algorithm’s convergence has been established in
[PG08] and [GLP15] for the convex case. More generally, we find a review of different complexity
results on TFDPs in [FL23]. Additionally, SDDP has proven effective in various applications and
numerous enhancements have been proposed over the years, see [Ser23; FR23] for a comprehensive
review.

For non-convex problems, such as those involving binary variables, we find several TFDP
algorithms that use specific cuts in the literature. A few notable examples include: [Fer+13],
which leverages the Lagrangian relaxation of the stage problem to generate strengthened Benders’
cuts using Lagrange multipliers; Mixed Integer Dynamic Approximation Scheme (MIDAS)
[PWB20], which employs step functions, assuming the cost-to-go functions are monotonic with
respect to the state variables; Stochastic Lipschitz Dynamic Programming (SLDP) [ACF22],
which uses concave L1 cuts for Lipschitz cost-to-go functions; and [RvdL24], which proposes
scaled-cuts.

Another approach is to construct a heuristic leveraging the approximations that can easily
be obtained with SDDP. For example, Thevenin, Adulyasak, and Cordeau apply SDDP to
solve a multi-echelon lot-sizing problem [TAC22], which is naturally formulated as an MSiLP.
They propose two strategies: one is to compute the integer variables using Progressive-Hedging
(PH); and the other involves iterating between solving the first-stage problem to optimize the
integer variables and solving the parameterized problem with SDDP, refining the cost-to-go
approximations injected in the first-stage problem. Another example is the approach proposed in
[FLG24], where we solve mixed-integer programs in the forward pass while computing Benders-like
cuts of the continuous relaxation of stage problems in the backward pass. However, this heuristic
can lead to infeasible policies, as demonstrated by a small example in Chapter 3. Further, there
are no convergence guarantees to the actual value of the problem with those heuristics.

To tackle specifically binary variables, Stochastic Dual Dynamic integer Programming (SDDiP),
introduced in [ZAS19], uses Lagrangian and strengthened Benders’ cuts that fit binary variables.
Although this paper provides a proof of convergence, the computation of these cuts is complex
and significantly increases the computational load. Additionally, these cuts are designed explicitly
for binary state variables. Consequently, adapting the algorithm for broader problem classes, such
as MSbLP, requires substantial discretization, further impeding convergence. In [QGK21],the
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authors suggest enhancements to SDDiP by considering a partial decomposition of the problem
into subproblems formulated over a set of nodes– or subtree– of the scenario tree. To approximate
those subproblems, they use similar cuts as in SDDiP as well as specific lot-sizing cuts relevant
to their application.

5.2 A generic algorithm with convergence results

In this section, we recall the mathematical formulation of an MSbLP as a large MILP. Then,
leveraging the results found in Section 4.3, we propose efficiently solvable approximations of an
MSbLP. Finally, we obtain a branch-and-bound algorithm to solve an MSbLP with stagewise
independent uncertainty.

5.2.1 Branch-and-Bound for solving MSbLP

We consider an MSbLP, where all of the uncertainty can be represented with a scenario tree
T Ω = (NΩ,AΩ, wΩ), see Section 4.1.2 for more details. We have seen that an MSbLP can be
reformulated as a very large MILP. Indeed, leveraging the structure of the T Ω, the extensive
formulation of the problem reads

(P T
Ω

xinit) min
x,y,b

∑
ν∈NΩ\{r}

πνLtν (xa(ν), yν , bν , ξν) (5.1a)

xν = Ftν (xa(ν), yν , bν , ξν) ⊂ Xtν ∀ν ∈ NΩ \ {r} (5.1b)

yν ∈ Ytν (xa(ν), ξν) ∀ν ∈ NΩ \ {r} (5.1c)

bν ∈ Btν (xa(ν), ξν) ∩ {0, 1}nb ∀ν ∈ NΩ \ {r} (5.1d)

xr = xinit, (5.1e)

where for each node ν, ξν is the information unveiled in node ν. Then, we have state variables
xν ruled by dynamics (5.1b) and initialized (5.1e); and control variables (yν , bν) that are either
continuous (5.1c) or binary (5.1d), with nb the number of binary variables per node. Finally, as
we assume that the problem is stagewise independent, the instantaneous cost Ltν , the dynamics
Ftν and feasible sets Xtν ,Ytν ,Btν , at ν depend only of its depth tν i.e., the stage in which ξν is
occurring.

A classical method for solving MILPs is the so-called Branch-and-Bound approach, which consists
of iteratively fixing binary variables and solving some continuous relaxation of the remains (see
Algorithm 10). However, in our setting, the resulting MILP (5.1) is so large that even the LP
relaxation cannot be solved efficiently in practice, unless we are under stagewise independence
assumptions. In such a case, we can obtain a solution efficiently with SDDP. We have seen in the
previous chapter that SDDP can tackle some variations of this problem. To solve Problem (5.1)
through a Branch-and-Bound approach, we have to be careful to branch on the binary variables
in a way such that the subproblem remains tractable by SDDP. In other words, this means
that, at every stage of the branch and bound process, we choose a continuous and symmetric
assignation function (see Section 4.3.1). We next show how to do that in practice.

5.2.2 Partially relaxing integrality

The algorithm we present in Section 5.2.4 relies on first solving an approximation of (P T
Ω

xinit),
and then iteratively strengthening this approximation until we get a satisfactory solution. More
specifically, we consider a partial continuous relaxation of (P T

Ω

xinit), meaning we relax some of the
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binary constraints. To leverage SDDP cuts, this partial continuous relaxation has to be structured
by a pruned subtree of T Ω, defined in Section 4.1.1. Let Tp = T Ω

[
Np
]

be a pruned subtree,

composed of subset of nodes Np, we call (PR
Tp
xinit) the partially relaxed problem formulated as

(PR
Tp
xinit) min

x,y,b

∑
ν∈NΩ\{r}

πνLtν (xa(ν), yν , bν , ξν) (5.2a)

xν = Ftν (xa(ν), yν , bν , ξν) ⊂ Xtν ∀ν ∈ NΩ \ {r} (5.2b)

yν ∈ Ytν (xa(ν), ξν) ∀ν ∈ NΩ \ {r} (5.2c)

bν ∈ Btν (xa(ν), ξν) ∀ν ∈ NΩ \ {r} (5.2d)

bν ∈ {0, 1}nb ∀ν ∈ Np \ {r} (5.2e)

xr = xinit. (5.2f)

Note that in the difference between Problem (5.1) and (5.2) is that integrality constraints (5.2e)
are enforced only for nodes in Np. Note that this specific relaxation corresponds to the partially

relaxed-assignation bTp . Further, in (PR
Tp
xinit), the subproblem from µ ∈ C(Np), a child of the

pruned subtree, is a continuous relaxation of (P
T|µ
xa(µ)

). The optimal cost of this relaxed subproblem

is denoted V̂ r
tµ and reads

V̂ r
tµ(x, ξµ) = min

x,y,b

[
Ltµ(x, u, b, ξµ) + V r

tµ+1(z)

]
(5.3a)

z = Ftµ(x, u, b, ξµ) ⊂ Xtµ (5.3b)

u ∈ Ytµ(x, ξµ) (5.3c)

b ∈ Btµ(x, ξµ) (5.3d)

V r
tµ(x) = E

[
V̂ r
tµ(x, ξtµ)

]
. (5.3e)

More generally, for any approximations {R̂t}t∈[T ] of cost-to-go functions (5.3), we formulate the

corresponding approximation of (PR
Tp
xinit) with the Tp−backward operator B̂Tp({R̂t}t∈[T ]):

B̂Tp({R̂t}t∈[T ])(xinit) = Min
x,y,b

∑
ν∈Np\{r}

πνLtν (xa(ν), yν , bν , ξν) +
∑

µ∈C(Np)

πµR̂tµ(xa(µ), ξµ)

xν = Ftν (xa(ν), yν , bν , ξν) ⊂ Xtν ∀ν ∈ Np \ {r} (5.4a)

yν ∈ Ytν (xa(ν), ξν) ∀ν ∈ Np \ {r} (5.4b)

bν ∈ Btν (xa(ν), ξν) ∩ {0, 1}nb ∀ν ∈ Np \ {r} (5.4c)

xr = xinit. (5.4d)

Those operators were previously introduced in Section 4.1.3, in the more general setting without
stagewise independence. In particular, if we know the true relaxed cost-to-go functions V̂ r

t , the

optimal value of (PR
Tp
xinit) is given by B̂Tp({V̂ r

t }t∈[T ])(xinit).

We use this formalism to define a converging algorithm in the next section.

5.2.3 An exact algorithm to solve (PR
Tp
xinit)

We now give an exact algorithm to solve the partially relaxed problem (PR
Tp
xinit) defined in (5.2),

relying on SDDP cuts that approximate the relaxed cost-to-go functions V̂ r
t .
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Assuming we have initial cost-to-go approximations {V̂ r,0
t }t∈[T ], that are linear cuts, B̂Tp({V̂

r,0
t }t∈[T ])(xinit)

is an MILP that can be solved with any fit for mixed-integer programming solver. We obtain a
solution {xkν}ν∈Np and the cost-to-go, from a child µ of Tp, is estimated through V̂ r,0

tµ (xka(µ)) – and
therefore is an underestimate of the true cost-to-go function. Observe that evaluating the gap
(even in the continuous convex setting) requires either a Monte-Carlo simulation, or some other
upper bound techniques. For the algorithm to converge, we must refine the approximation V̂ r,0

t .
To that end, we solve the subproblem(5.3), a multistage stochastic linear continuous problem,
at xka(µ) with SDDP which converges to the true value of V̂ r

tµ(xka(µ)). Then, we update the

approximation V̂ r,0
tµ with the new cuts computed by SDDP. If we iterate, we obtain Algorithm 11

which converges to the optimal value of (PR
Tp
xinit). The proof of convergence can be derived

straightforwardly using arguments similar to those in SDDP’s convergence proof.

Algorithm 11: An exact algorithm to solve (PR
Tp
xinit).

1 Input: inital approximations {V̂ r,0
t }t∈[T ];

2 while stopping criterion is not met do // Iteration k

3 Solve B̂Tp({V̂
r,k−1
t }t∈[T ])(xinit) ; // we solve an MILP

4 We set f its value, and {xkν}ν∈Np its optimal solution;

5 Run SDDP with forward trajectories starting from xkν for all ν ∈ L(Tp) // refine

{V̂ r,k−1
t }t∈[T ]

6 Return f ;

At each iteration of Algorithm 11, we run SDDP at each leaf of the subtree i.e., |L(Tp)| times.
This is computationally heavy, especially since cuts computed are shared between leaves (V̂ r

t

are stage dependent only). There are other ways of using SDDP to update {V̂ r,k−1
t }t∈[T ]. One

possibility is to choose, at each iteration, a leaf ν ∈ L(Tp) and run SDDP from this leaf until
convergence at xkν before moving to the next leaf. Another consists in having, for each forward
pass of SDDP, |L(Tp)| trajectories, each starting from one xkν . Of course, we can look for a middle
ground by randomly selecting a subset of leaves for each forward pass while still evaluating the
gap for all leaves.

5.2.4 An algorithm to solve MSbLPs

In the previous section, we proposed an exact and converging algorithm to solve (P
Tp
xinit) for

any pruned subtree Tp. The optimal value of (P
Tp
xinit) is a lower bound on the optimal value of

Problem (5.1). We can also derive from Tp a policy, using a rolling horizon procedure detailed
in Section 5.5.3, for Problem (5.1) with F̂Tp({V̂ r

t }t∈[T ]), where V̂ r
t are given by SDDP. Then,

by simulating this policy on a sample of scenarios, we obtain a statistical upper bound on

Problem (5.1). Thus, each pruned tree Tp gives us a bounded interval in which lies v(P
T Ω

xinit).

Starting from an empty subtree T Ω
[
{r}
]
, we propose to iteratively grow a pruned subtree Tp,

until the policy derived from Tp gives satisfactory solutions. This growing strategy (of the pruned
subtree) corresponds to a branch-and-bound branching strategy to find a lower-assignation blb,
mentioned in Section 4.3.2. We discuss different growing strategies in the next section. Combined
with Algorithm 11, we obtain Algorithm 12 to solve an MSbLP.
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Algorithm 12: A growing MILP tree algorithm for MSbLP.

1 Input : initial tree Tp = T Ω
[
{r}
]
,

2 Compute lower bounds V r
[T ] via SDDP;

3 while stopping criterion is not met do
4 Select nodes in C(Np) to grow Tp;

5 Solve (P
Tp,V r[T ]
xinit ) with Algorithm 11 to update the lower bounds V r

[T ] ;

6 Estimate an upper-bound ub through SAA;

We call pool of candidates the set of nodes eligible to grow the subtree Tp = T Ω
[
Np
]

into another
subtree Tp′ = T Ω

[
Np′
]
, with Np ⊂ Np′ . In Algorithm 12, we propose a method growing a subtree

node by node i.e., where the pool of candidates is the children set C(Np) of the current subtree
Tp. Indeed, any other node could not grow T into another subtree alone. More generally, we can
grow a subtree with branches, where a branch is a path {νk}k∈[τ ] in T Ω such that ν1 ∈ C(N) and

the path is not in T i.e., νk /∈ N, for all k. Then, we can consider any set Nc ⊆ NΩ \ Np to be
the pool of candidates, if we grow the subtree Tp with the unique branch connecting Tp to node
ν ∈ Nc. In other words, if we want to grow the subtree Tp with any node µ ∈ NΩ \ Np, we have
to add all descendants of µ as well.

Remark 6 (Additional SDDP run). Algorithm 12 start by solving the relaxed problem with
SDDP, ending with lower approximations V r

[T ]. These approximations are good on the support of
the policy they induce. However, at each iteration, we add new binary constraints to the model and

the obtained solution of (P
Tp,V r[T ]
xinit ) progressively changes. In particular, the state at the leaf of the

current tree might go into part of the space where SDDP has not converged, for example, because
it was not part of the support of the optimal solution of the convex relaxation. As in Algorithm 11,
we may run multiple times SDDP to make sure the approximations V [T ]r(x) converge, which
increase the computation time, and still provide only a lower bound of the (non-relaxed) value
function. Consequently, we may want to use only the initial SDDP cuts and check convergence –
and add new cuts – at the leaf states only sparingly.

5.3 Growing (integer) subtree strategies

We presented an exact branch-and-bound algorithm to solve MSbLP in the previous section.
In BB, one challenge is choosing a branching strategy (see Section 4.2.3). We elaborate here
on different growing strategies to grow the subtree Tp, the goal being to limit the number of
iterations of Algorithm 12. Note that we are specifying here the branch-and-bound proposed in
Section 4.3.2 to find a lower-assignation blb. We give an example of a scenario tree in Figure 5.1.
In the next section, we illustrate how the different growing strategies work on this example.
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Figure 5.1: A scenario tree T Ω with T = 4 and for each stage t, |Ξt| = 2.

Recall that Algorithm 12 solves increasingly large problems (PRTxinit) that are structured by
pruned subtrees. Starting from a given pruned subtree Tp = T Ω

[
Np
]
, we grow Tp by adding

nodes to Tp while conserving a pruned subtree structure. More precisely, we can grow Tp with
one of its children µ ∈ C(Np) into subtree Tp′ = T Ω

[
Np ∪ {µ}

]
.

The structure of a subtree depends significantly on the growing strategy we choose. We introduce
two key features to characterize a subtree T = T Ω

[
N
]
. First, we define the depth of T, denoted

tT , as the maximum depth among its leaves i.e.,

tT = max
ν∈L(T)

tν .

Second, for each subtree T, we define the density of a layer Nt, denoted ρ(Nt), as the proportion
of that layer contained in T i.e.,

ρ(Nt) =
Nt
NΩ
t

.

Since Nt = N ∩ NΩ
t , ρ(Nt) ranges from 0, when the layer is empty, to 1, when the layer is

complete. By definition, if ρ(Nt) = 1 then ρ(Nτ ) = 1 for all τ < t. Similarly, if ρ(Nt) = 0, then
ρ(Nτ ) = 0 for all τ > t. If current decisions have little impact on distant future costs, we might
prefer a policy constructed with subtrees that are dense at earlier stages and sparse in future
stages.
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Figure 5.2: Example of two subtrees of the scenario tree in Figure 5.1 of same size.

In Figure 5.2, we illustrate two subtrees of the scenario tree shown in Figure 5.1, each containing
six nodes. The subtree on the left is described as bushy, meaning it is dense i.e., ρ(Nt) ≈ 1 for
some t, but shallow i.e., tT � T . In contrast, the subtree on the right is elongated, characterized
by its depth, tT � 1, though its layers are sparse ρ(Nt) � 1 for some t. Unfortunately, we
cannot establish dominance of one type of subtree over the other. The performance of bushy
versus elongated subtrees depends on the specific problem structure, including its constraints,
size, and shape of the initial scenario tree. Either type may prove more effective depending on
the problem instance.

We now present different growing strategies for Algorithm 12.

5.3.1 Shortsighted strategy

Before presenting growing strategies, where we iteratively grow a subtree node by node, we
discuss the special case of growing the subtree layer by layer, which amounts to considering only
t−shortsighted subtrees.

Indeed, in a multistage setting, the most intuitive way to simplify the problem is to consider
we have complete information until a given time t, and relax the far future. In other words, we
consider all decisions on a smaller horizon [1 : t] with t < T , and we relax integrality constraints
for τ > t. This corresponds to the partially relaxed problem (P T1:t

xinit). Then, we can grow the
subtree T layer by layer, and we obtain a particular case of Algorithm 12. We refer to this
strategy as the shortsighted strategy and we illustrate its first iterations in Figure 5.3.

With the shortsighted strategy, there is no choice on how to grow a t−shortsighted subtree T1:t

but to add all nodes in C(N1:t). Hence, we have no control over the size of the expansion of a
subtree, and quickly, we fall back on the curse of dimensionality. For example, with Q = 10
realization per stage, growing a t−shortsighted subtree into a (t + 1)−shortsighted subtree

multiplies the number of variables by 10. Let us assume we cannot solve (P
T1:t+1
xinit ) in reasonable

time and we are not satisfied with the solution obtained by solving (P T1:t
xinit). This leads us to

construct an intermediate subtree on which the resulting problem is solvable. For example, this
subtree could contain all nodes in N1:t and some nodes in NΩ

t+1.

Further, the shortsighted strategy also leads to bushy subtrees, which, in some problems, can
prove less efficient than elongated subtrees. With this in mind, we propose different growing
strategies that rely on other pruned subtrees, where we have more flexibility in how to grow the
subtree.
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Figure 5.3: Illustration of the shortsighted strategy on the scenario tree in Figure 5.1: in red we
represent nodes in the subtree, in green the children of the subtree, which are also candidates to
grow the subtree. At iteration 1, we have the subtree T1:1 on the left; at iteration 2, we have the
subtree T1:2 on the middle; at iteration 3, we have the subtree T1:3 on the right; and so on.

5.3.2 Random growing strategy

A simple way to choose objects among a set is to select them randomly. Though it could be
efficient in some setting, randomly selecting nodes does not give us any guarantee on the quality
of the solution we might get. It also prevents interpreting the results unless we do a sensitivity
analysis by replicating the random growth.

Starting from a given subtree T = T Ω[N], we propose a random growing strategy, based on two
key elements. First, we select a pool of candidate nodes. Second, we define the probability
distribution from which nodes are randomly drawn to grow T. Different distributions or candidate
pools may be considered depending on the desired structure of the subtree.

The candidate pool is naturally C(Np) in a strategy where the subtree is grown node by node.
Starting from the empty subtree Tp0 = T Ω

[
{r}
]
, we randomly select a node ν among C(Np0)

with uniform distribution. In Figure 5.4, we observe six iterations of this random growing strategy.
This strategy tends to produce elongated subtrees, as the early layers contain fewer nodes and
thus have a lower probability of being selected.

Alternatively, we can define the candidate pool as a specific layer NΩ
t ∩ C(Np) and draw nodes

uniformly from this layer. This strategy offers more control over the density of the subtree: for
bushy subtrees, we can select a dense, partially filled layer, while for more balanced subtrees, a
sparse layer can be chosen.

Another strategy involves growing the subtree with any node ν ∈ NΩ \ Np. As detailed in
Section 5.2.4, this implies growing the subtree with the branch connecting it to the chosen node.
One option is to use the leaves L(T Ω) \ Np as candidates, meaning we incorporate an entire
scenario’s information into the partial relaxation at once. In this case, we randomly select a leaf
from L(T Ω) \ Np with a uniform distribution.

The outcome remains uncertain although we can influence the random strategy by choosing
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Figure 5.4: Illustration of the random growing strategy on the scenario tree in Figure 5.1: in red
we represent nodes in the subtree, in green the candidate pool, here the children of the subtree
C(Np). We represent six iterations of the random strategy.

candidates and the probability distribution. The following sections discuss growing strategies
designed to maximize solution quality. Rather than using fixed (like the shortsighted) or random
strategies, we evaluate a score to each candidate, representing the importance of enforcing
integrality constraints at this node. We then grow the subtree with the highest-scoring candidate.

5.3.3 Gap with Integrality

We aim to develop a growing strategy that constructs a subtree providing the best possible
approximation. To grow a given subtree Tp, we here consider C(Np) as the candidate pool. Our
challenge here is to determine which node µ ∈ C(Np) should have integrality constraints i.e., is
the most impactful on the solution of our problem.

To that end, we introduce the integrality gap function gapint : [0, 1] → [0, 1], represented in
Figure 5.5, which represents the gap between a variable and {0, 1}:

gapint(b
r
k) = 1− (1− 2brk)

2. (5.5a)

bk
0.5 10

1

Figure 5.5: Representation of gapint.

As the binary variables b in Problem (5.1) are in {0, 1}nb , we extend gapint to nb variables by
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summing their integrality gap:

gapint(b
r) : [0, 1]nb → [0, nb] (5.5b)

br 7→
nb∑
k=1

gapint(b
r
k). (5.5c)

The integrality-gap branching strategy consists in adding to the tree the node of C(Tp) whose
solution br has the largest integrality gap. More precisely, at an iteration of Algorithm 12, we
solve B̂Tp({V t}t∈[T ])(xinit), the problem on the current subtree Tp, where the relaxed portions

of the scenario tree are approximated with SDDP cuts V r
[T ]. Because B̂Tp({V t}t∈[T ])(xinit) is

formulated on a pruned subtree, we only have a local solution for nodes in Tp. However, for
candidate nodes µ ∈ C(Np), which are not in Np, we can compute a relaxed solution (xrµ, u

r
µ, b

r
µ)

by solving:

(x̂rµ, û
r
µ, b̂

r
µ) = arg min

x,y,b

[
Ltµ(x̂a(µ), u, b, ξµ) + V r

tµ+1(x)

]
(5.6a)

x = Ftµ(x̂a(µ), u, b, ξµ) ⊂ Xtµ (5.6b)

u ∈ Ytµ(x̂a(µ), ξµ) (5.6c)

b ∈ Btµ(x̂a(µ), ξµ), (5.6d)

where V r
tµ+1 is our current cost-to-go approximation at tµ + 1 and x̂a(µ) is the local solution of

µ′s parent. Then, We can assess the integrality gap of candidate node µ by computing gapint(b
r
µ).

Finally, we choose the node that maximizes the integrality gap µ? := arg maxµ∈C(Np)

{
gapint(b

r
µ)
}

.

Remark 7. Note that from one iteration to another, the solution we obtain when solving (P
Tp
xinit)

can evolve. More precisely, if at iteration k we decide to grow the subtree Tp with node µ, we begin

iteration k + 1 with the subtree Tp′ = T Ω
[
Np ∪ {µ}

]
. The problem we solve (P

Tp′
xinit) is very close

to (P
Tp
xinit), but for ν ∈ Np′ , the solution x̂ν can be differ. In Figure 5.6, we illustrate how growing

the subtree with one node can infer on the relaxed variables computed for candidate nodes.

If we want to consider all nodes not in Np as candidates, it is slightly more complicated to

compute b̂rµ for a candidate µ. Indeed, if µ is connected to Tp by the branch (νk)k∈[τ ], we first have
to compute x̂rν1

by solving Problem(5.6) for ν1 with incoming state x̂a(ν1). Then, we compute
recursively all x̂rνk by solving Problem(5.6) for νk with incoming state x̂rνk−1

. In the end, we

obtain (x̂rµ, û
r
µ, b̂

r
µ) and can assess the integrality gap gapint(b̂

r
µ) of node µ.
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Figure 5.6: Illustration of the methodology to compute the integrality gap of candidate nodes
for the integrality gap growing strategy. In red, we represent the current subtree Tp and the
candidate pool in green. Here, we first solve the MILP obtained by partially relaxing the problem
on Tp. From the solution, we can compute the relaxed solution of candidate nodes by solving

Problem(5.6). Once we have b̂rµ for a candidate µ, we can compute its integrality gap gapint(b̂
r
µ).

We choose the node maximizing gapint: here ν3. The lower part of the figure indicates the next
iteration.

5.3.4 Strong Branching

Finally, we propose a strategy led by the improvement of the lower bound obtained by solving
(PR

Tp
xinit). Similarly, as in Section 4.3.2, we want to choose to keep integrality in order to improve

the most the lower-bound obtained with our lower assignation. Here, starting from a subtree Tp, for
each candidate µ ∈ C(Np), we consider the candidate subtree T ′p = T Ω

[
Np ∪ {µ}

]
. We solve each

problem B̂T ′p ({V t}t∈[T ])(xinit) and choose the candidate that improves the most the lower-bound.
This strategy corresponds to the commonly used strong branching method in branch-and-bound
literature. We thus refer to it as the strong-branching growing strategy. For example, in Figure 5.7,
we observe an iteration of the algorithm, starting from subtree Tp = T Ω

[{
r, ν1, ν2, ν5

}]
. For each

candidate µ ∈ C(Np) =
{
ν3, ν4, ν6, ν11, ν12

}
, we solve B̂

T Ω
[
Np∪{µ}

]({V t}t∈[T ])(xinit) and obtain a

lower-bound lb. We then choose to add the node that improves the most the lower-bound when
growing the subtree, in this example ν4.

Note that this method is extremely heavy in terms of computation. Indeed, at each iteration,
we have to solve |C(Np)| MILPs. Further, the size of the children |C(Np)| increases, unless we
add a leaf of the initial scenario tree, and the MILPs we have to solve are increasing large, and
harder to solve. To find a balance between robustness of the strategy and computational time,
we suggest reducing the candidate pool. The C−strong branching strategy is a strong branching
strategy conduced on a batch of candidates, that we select randomly, with uniform distribution,
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Figure 5.7: Illustration of an iteration of the strong branching growing strategy. In red, we
represent nodes in the current subtree Tp and in green the candidate pool. Then, each subtree
corresponds to the candidate subtree T ′p = T Ω

[
Np ∪ {µ}

]
for a candidate node µ, and we can

read the lower-bound obtained by solving the partially relaxation on T ′p .

in C(Np). Depending on the size of the batch, this strategy reduces significantly the number of
computations. For instance, if we take the example in Figure 5.7, with a 2−strong branching
strategy we only solve 2 MILP instead of 5.

5.4 Information gained from single scenario model

We have presented a new approach to solve MSbLP relying on partial relaxations of binary
variables. In contrast, we confront those approaches with widely used deterministic approaches
which relax information– but not integer– constraints. In this section, we first introduce the
anticipative framework which relaxes entirely non-anticipativity constraints and assumes the
future is known. Though it is unrealistic, we derive from this framework an indicator to measure
the impact of uncertainty on a problem. Then, we present the Model Predictive Control (MPC)
methodology which is an adaptive deterministic algorithm employed in practice to solve problems
under uncertainties.

5.4.1 The Perfect Information lower bound

A natural lower bound for stochastic problems comes from relaxing the non-anticipativity
constraint (2.8e). We are then in the anticipative, or Perfect Information (PI), framework which
consists in assuming that we can look into the future and know the noises realization (e.g., what
energy costs at any given time). More precisely, the anticipative policy returns, for each scenario
ξPI

[T ] a solution that perfectly fits this scenario i.e., that is an optimal solution to the deterministic
problem:
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V̂ PI(xinit, ξ
PI
[T ]) := min

x,y,b

T∑
t=1

Lt(xt−1, yt, bt, ξ
PI
t ) (5.7a)

xt = Ft(xt−1, yt, bt, ξ
PI
t ) ⊂ Xt ∀t (5.7b)

yt ∈ Yt(xt−1, ξ
PI
t ) ∀t (5.7c)

bt ∈ Bt(xt−1, ξ
PI
t ) ∩ {0, 1}nb ∀t (5.7d)

x0 = xinit. (5.7e)

Note that, obviously, this policy is usually not admissible for Problem (2.9) as it requires
unavailable information. However, by definition, V̂ PI(xinit, ξ

PI
[T ]) is a lower bound of the cost

incurred by any admissible policy on this scenario. Then, the PI lower bound is defined as the
average over all scenarios of the value yielded by the anticipative policy:

V PI(xinit) := E
[
V̂ PI(xinit, ξ[T ])

]
. (5.8)

Finally, the Expected Value of Perfect Information (EVPI) [RS61] is defined as:

EV PI = Vr(xinit)− V PI(xinit). (5.9)

The EVPI characterizes the impact of uncertainty on a stochastic problem.

5.4.2 Model Predictive Control

In the industry, the Model Predictive Control (MPC) algorithm is widely used to solve operational
problems with an adaptive approach. Although this algorithm (see Algorithm 13) is determin-
istic—meaning all uncertain parameters are fixed— it adapts by solving a new optimization
problem at each stage to adjust for real-time uncertainties, fixing only the decisions for the
current stage t. Concretely, at each stage t, Algorithm 13 solves a deterministic approximation
of the problem on horizon [t : T ], but only enforces the decisions related to stage t.

Though MPC does not guarantee optimality, it has proven effective in practice. For instance, in
Chapter 3, we show that for the operational problem MPC yields better policies than stochastic
approaches. However, MPC can construct infeasible policies, as illustrated in Example 2.
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Algorithm 13: Model Predictive Control

1 Input : xinit, initial forecast ξf[T ];

2 for t : 1→ T do
3 Observe random realization ξt at t;

4 Update forecast ξf[t:T ];

5

(u?[t:T ], b
?
[t:T ]) ∈ arg min

x[t:T ],y[t:T ],b[t:T ]

T∑
τ=t

Lτ (xτ−1, yτ , bτ , ξ
f
τ )

xτ = Fτ (xτ−1, yτ , bτ , ξ
f
τ ) ⊂ Xτ ∀τ

yτ ∈ Yτ (xτ−1, ξ
f
τ ) ∀τ

bτ ∈ Bτ (xτ−1, ξ
f
τ ) ∩ {0, 1}nb ∀τ

xτ−1 = xt−1.

xt := Ft(xt−1, u
?
t , b

?
t , ξ

f
t );

Example 2 (An example where MPC fail). Consider a production unit that produces two products
j = A,B over T = 2 time steps and one machine. The shared resource constraint, modeled
through binary variables bjt , implies that we must decide which product to produce at t = 1, and
which at t = 2. The demand in product B is a random variable dB uniformly distributed in
{0, 2}. The problem reads

min 2uA1 + uB1 + uA2 + uB2 (5.10a)

s.t. uA1 + uA2 ≥ 1 (5.10b)

uB1 + uB2 ≥ dB (5.10c)

0 ≤ ujt ≤ 2bjt j = A,B, t = 1, 2 (5.10d)

bAt + bBt ≤ 1 t = 1, 2 (5.10e)

bjt ∈ {0, 1}, u
j
t ≥ 0 j = A,B, t = 1, 2. (5.10f)

If we solve this problem with MPC, then at t = 1, using the expected value of dB as an oracle,
we solve the following problem:

min 2uA1 + uB1 + uA2 + uB2 (5.11a)

s.t. uA1 + uA2 ≥ 1 (5.11b)

uB1 + uB2 ≥ E[dB] = 1 (5.11c)

0 ≤ ujt ≤ 2bjt j = A,B, t = 1, 2 (5.11d)

bAt + bBt ≤ 1 t = 1, 2 (5.11e)

bjt ∈ {0, 1}, u
j
t ≥ 0 j = A,B, t = 1, 2. (5.11f)

The optimal solution is to produce B first and then A, as A is cheaper in the second stage
i.e., uB1 = 1, uA1 = 0. Then, at t = 2, if the uncertainty that realizes is dB = 2, we have to solve
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the following problem:

min uA2 + uB2 (5.12a)

s.t. uA2 ≥ 1 (5.12b)

1 + uB2 ≥ 2 (5.12c)

0 ≤ uj2 ≤ 2bj2 j = A,B (5.12d)

bA2 + bB2 ≤ 1 (5.12e)

bj2 ∈ {0, 1}, u
j
2 ≥ 0 j = A,B. (5.12f)

This problem is infeasible and the value obtained with MPC is thus +∞.

5.5 Numerical results

In this section, we test Algorithm 12 on small instances to compare the different branching
strategies introduced in Section 5.3. Bear in mind that the example we chose is similar to the one
in Chapter 3, where we showed that a deterministic method worked better than the look-ahead
methodology, corresponding to the shortsighted branching strategy. However, this example allows
us, in small instances, to understand how the different growing strategies perform. We first
present the model of the problem, see Chapter 2 for a more detailed explanation of modeling
choices.

5.5.1 An industrial problem with exclusion constraints

We consider a facility with I machines that produce up to J types of products that can be stored.
Moreover, the facility owns an Energy Storage System (ESS). Our goal is to provide the facility
with a joint production and energy supply planning, on a discrete horizon t ∈ [T ]. One of the
particularities of the problem is that some products cannot be produced simultaneously, which
translates as exclusion constraints. We consider energy prices {pgridt }t∈[T ] as random variables
and choose a multistage stochastic formulation, leading to Problem (5.13), with notations
regrouped in Table 5.1.
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min
y[T ],x[T ],b[T ]

E
[ T∑
t=1

pgridt qgrid
t

]
(5.13a)

s.t. sjt = sjt−1 − d
j
t +

∑
i

ui,jt ∀t, j (5.13b)

ui,jminb
ij
t ≤ u

i,j
t ≤ u

i,j
maxb

ij
t ∀i, j, t (5.13c)∑

j

bijt ≤ 1 ∀i, t (5.13d)

max
i∈[I]

bijt + max
i∈[I]

bij
′

t ≤ 1 ∀(j, j′) ∈ J (5.13e)

φ−
t − φ

+
t + qgrid

t ≥
∑
i,j

αi,jui,jt + βi,jbijt ∀t (5.13f)

SOCt = SOCt−1 −
1

ρ
φ−
t + ρφ+

t ∀t (5.13g)

φ+
t ,φ

−
t ≤ Φ ∀t (5.13h)

SOCmin ≤ SOCt ≤ SOCmax ∀t (5.13i)

sjT ≥ s
j
final ∀t, j (5.13j)

bijt ∈ {0, 1} ∀i, j, t (5.13k)

σ(yt) ⊂ σ(qgrid
[t] ) ∀t. (5.13l)

To simplify notations, we regroup state variables at t in the vector xt :=
(
s
[J]
t ,SOCt

)
and

continuous control variables in yt :=
(
φ−
t ,φ

+
t , q

grid
t ,u

[I],[J]
t

)
. The objective (5.13a) is to minimize

energy costs, which are reduced to the cost of the energy purchased from the main grid qgrid
t .

We must satisfy the demand for each product, and to this end, we can decide how much quantity
to produce ui,jt and then store the product. Typical stock and ESS dynamics are modeled in
(5.13b) and (5.13g). The production is bounded (5.13c), and each machine can only produce
one product at a time (5.13d). We denote J ⊂ J2 the set of incompatible products such that if
(j, j′) ∈ J , they cannot be produced simultaneously (5.13e). We ensure there is always enough
energy for the production plan (5.13f), where the energy consumption is linear in the production.
Finally, the charge and discharge variables are bounded (5.13h), so is the battery (5.13i), and
there is a target end stock sjfinal for each product t (5.13j). Finally, to retrieve relatively complete
recourse hypothesis, that are required for SDDP, we allow and penalize unsatisfied demand d in
the objective.

In order to test Algorithm 12, we randomly generate instances of Problem (5.13) with varying
sizes (more details on the instance generation are given in Chapter A). Our goal here is mainly
to try to understand how the different growing strategies perform. Thus, we look for instances
of the problem where we can solve any partial relaxation of the problem to optimality in a
reasonable time, and in particular, the initial Problem (5.1). This has guided our choices for the
instance sizes (given by T and Q) we study in the next sections. Observe that the computational
time does not only depend on the scenario tree size, but also on the constraints, which can
significantly make the problem harder.
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Table 5.1: Notations for Problem (5.13)

Parameters Variables

sjfinal final targeted stock sjt quantity stored
[SOCmin, SOCmax] ESS bounds SOCt energy stored

[ui,jmin, u
i,j
max] production bounds ui,jt quantity produced

J incompatibility set bijt production binary
decision

ρ charging efficiency φ+
t energy charged

Φ (dis)charge bounds φ−t energy discharged

αi,j , βi,j energy consumption qgrid
t energy bought

parameters

djt demand of j at t pgridt random energy prices
Indices

t stages xt state variables
i machines yt control variables
j products bt binary variables

5.5.2 Lower bounds for (P
Tp
xinit)

In this section, we evaluate the growing strategies introduced in Section 5.3, namely the short-
sighted strategy, the random strategy, the Integrality Gap (IG) strategy and the Strong-Branching
(SB) strategy. Except for the shortsighted strategy, the growing strategies have different variants
(see Section 5.3). For simplicity, at iteration i, the pool of candidates for the random, IG and SB
strategies, given a current subtree Ti := T Ω

[
Ni
]
, are its children C(Ni).

For any subtree Tp, solving (PR
Tp
xinit) with Algorithm 11 gives us a lower bound on Problem (5.1).

Thus, we propose to assess a subtree with its corresponding lower bound i.e., the optimal value
of (PR

Tp
xinit). In addition, we compute the Perfect Information (PI) lower bound, presented

in Section 5.4.1, and the continuous relaxation lower bound with SDDP. Finally, we assess

how far the lower bounds are from the optimal value of the problem, v(P
T Ω

xinit). Indeed, for the
chosen instances, the scenario trees are sufficiently small to solve the extensive formulation of
Problem (5.1).

Three instances of Problem (5.13) with distinct scenario tree structures are selected to test the
methodology. We refer to a particular instance as IT,Q where T is its number of stages and Q
its number of noise realization per stage. First, we consider I3,9, where the initial scenario tree
looks like a bush, meaning it is short but each layer is well furnished (T � Q), with a total of
QT = 729 scenarios. In contrast, the scenario tree representing I8,2 (with QT = 256 scenarios)
is more of a twig, high but with sparse layers (Q � T ). Finally, I5,4 (with 1048 scenarios)
corresponds to a balanced scenario tree, where T ≈ Q.

For each instance, the T − 1 shortsighted subtrees are constructed. To enable comparison and
limit computations, random subtrees of the same size as the shortsighted ones are generated.
For a given size N , we compute a 95% confidence interval for the lower bound of the random
strategy by generating 100 random subtrees of size N . Finally, as the IG and SB strategies are
iterative, subtrees of increasing size are solved until solution times become prohibitive. Due to
the high computational load, we set a time limit for solving the partially relaxed subproblems:
1000 seconds for shortsighted subtrees and 180 seconds for other strategies, given the greater
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number of computations involved.

We observe the lower bounds obtained with different growing strategies depending on the subtrees’
size for I3,9, I8,2 and I5,4 on Figures 5.8 to 5.10. Note that when the partially relaxed problem
could not be solved to optimality, the optimality gap obtained is represented as an interval. Note
that for the random strategy, all subproblems of all instances are solved to optimality and thus
the optimality gap interval is not to be confused with the one representing statistical fluctuation.
For example in I8,2, we observe a gap for the {5, 6, 7}−shortsighted lower bounds and for the

SB strategy from N = 35.

Figure 5.8: v(PRTxinit) depending on T of size N for I3,9, zoomed on the right for clarity.

Regarding the improvement of the lower bound, no strategy consistently outperforms the others
on these small instances: whereas the SB strategy is preferable for I3,9, the random and IG
strategies perform just as well for I5,4, and for I8,2, the shortsighted strategies yield the best
lower bounds by far. This is likely due to the structure of the problems: depending on how
uncertainties affect future costs or the significance of binary constraints, one strategy may be
more advantageous than others. Thus, at this point, we cannot provide specific guidelines on
which growing strategy to select.

Finally, we observe in each example that even the best lower bounds computed are far from the
optimal value (we synthesize the results in Tables B.1 to B.3). In I3,9, the best lower bound
reaches a value of 26, leaving a 28% gap from the optimal value, which is approximately 36.3.
Here, considering subtrees containing at most 12.3% of the initial scenario tree is not enough
to obtain a good lower bound on the value of the problem. Similarly, in I8,2 we have at best a
15% optimality gap and a 22% one for I5,4. Thus, even though this methodology yields improved
lower bounds compared to SDDP, it does not give a satisfactory approximated optimal value of
Problem (2.9).

In the next section, we assess the different growing strategies through another metric: we look at
the policies that can be derived from subtrees grown in a certain way to solve Problem (2.9).
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Figure 5.9: v(PRTxinit) depending on T of size N for I8,2.

Figure 5.10: v(PRTxinit) depending on T of size N for I5,4.

5.5.3 Simulating policies

In order to compute a policy for stage t, we introduce the forward bellman operators F̂T|ν0 which
depend on a ν0−extracted subtree with tν0 = t and ν0 6= r. These operators rely on the cost-to-go
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approximations retrieved from SDDP cuts V r
[T ]:

F̂T|ν0 (V r
[T ])(x) = arg min

x,y,b

∑
ν∈N|ν0

πνLtν (xa(ν), yν , bν , ξν) +
∑

µ∈C(N|ν0 )

πµV
r
tµ(xa(µ), ξµ)

xν = Ftν (xa(ν), yν , bν , ξν) ⊂ Xtν ∀ν ∈ N|ν0
(5.14a)

yν ∈ Ytν (xa(ν), ξν) ∀ν ∈ N|ν0
(5.14b)

bν ∈ Btν (xa(ν), ξν) ∩ {0, 1}nb ∀ν ∈ N|ν0
(5.14c)

xa(ν0) = x. (5.14d)

With those operators, we can simulate for any scenario a policy depending on a growing strategy
with the rolling horizon procedure. Starting from state x, we observe the uncertainty at stage
t corresponding to node ν0. Given the chosen growing strategy, we construct a ν0−rooted
subtree T|ν0

with its related forward operator F̂T|ν0 . We then compute a solution (x̂ν , ŷν , b̂ν) ∈
F̂T|ν0 (V r

[T ])(x), where V r
[T ] are the cuts computed by SDDP. Finally, we enforce only the decisions

(x̂ν0 , ŷν0 , b̂ν0) computed for node ν0, resulting in outgoing state x′. We iterate until we reach the
final stage.

We can compare the strategies obtained following this procedure with the one computed by MPC,
presented in Section 5.4.2. Bear in mind that in the previous section, we tested the performance
of those strategies on small instances of the problem. We did not specifically select instances
where MPC performs poorly; in fact, we observe that MPC produces almost optimal policies in
these cases. In the next section, we will present a slight adaptation of the application, for which
deterministic methods, such as MPC, perform poorly.

Due to the numerous computations, we select a number of strategies to test and simulate their
induced policies over all scenarios. This is possible with the limited number of scenarios (256, 729
and 1024) for the selected instances. The distribution over all scenarios obtained with different
policies for I3,9, I2,8 and I5,4 are represented in Figures 5.11 to 5.13. The expected value and
standard deviation obtained with different policies are gathered in Tables B.4 to B.6 in Chapter B.
Before analyzing results, we have to point out that in the case of I3,9, since the problem has
only 3 stages and there are no decisions at the root r, the policy induced by the 2−shortsighted
strategy is actually the optimal policy of the problem.

As in the previous section, we cannot identify a growing strategy that consistently outperforms
the others. If for I3,9 and I8,2, the shortsighted strategy yields lower average costs, the IG strategy
performs better in I5,4. This suggests that the growing strategy to adopt varies based on the
problem’s specific characteristics and size. The distribution of results also shows variability,
indicating no clear dominance of one approach.

However, for small-scale problems like these, the shortsighted strategy is viable as it remains
computationally feasible. With more time steps or uncertainty realizations, this strategy may
no longer be practical. On the other hand, the MPC approach proves to be highly effective,
achieving competitive results with relatively low computation time. This efficiency is likely due
to the high linearity of costs: solving the problem on average is quite effective.

Overall, when the size of the subtrees generated is adequately large, the shortsighted, random,
and IG strategies yield satisfactory policies. In particular for I5,4, the distribution of costs with
subtrees of size 20, compared to size 4 significantly, is way more compact, meaning the risk of
having costly simulations diminishes. This is promising for larger problems where MPC may
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Figure 5.11: Distribution of costs obtained by simulating different policies to solve I3,9, over all
729 scenarios.

Figure 5.12: Distribution of costs obtained by simulating different policies to solve I8,2, over all
256 scenarios.

not perform well, suggesting that these methods could effectively address MSbLP. In the next
section, we introduce specific constraints (e.g., bounding grid purchase variables) where our
approach leads to better performance than MPC, even in smaller cases.
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Figure 5.13: Distribution of costs obtained by simulating different policies to solve I5,4, over all
1048 scenarios.

5.5.4 Bounding the energy purchases

We concluded in the previous section that the problem presented in Section 5.5.1 can efficiently be
solved with a deterministic approach, MPC. The methodology we developed is meant for solving
problems where uncertainties must be taken into account. To complement the performance
analysis made in Sections 5.5.2 and 5.5.3, we consider in this section a slightly different application.

In this section, by slightly modifying the problem, we find an application where having a
deterministic approach can be highly penalized. Specifically, at each stage t, we bound the
instantaneous costs, which is in this problem the energy purchased on the main grid. In other
words, we give a budget for grid purchases at each stage. This is modeled with the following
constraint that is added to the model (5.13):

pgridt qgrid
t ≤ B ∀t. (5.15)

Since the energy prices are random variables, a lack of anticipation, for instance in deterministic
approaches, can affect feasibility. However, we recover relatively complete recourse hypothesis,
as in Section 5.5.1, by penalizing the violation of this new constraint (5.15).

Finally, we evaluate the different strategies through their induced policies, as in the previous
section, for two instances: I8,2 and I15,4. I8,2 allows us to compute the exact policies (as we can
simulate over all scenarios) and to estimate the gap with the optimal value of the problem. In
contrast, I15,4 is a large problem on which we are unable to solve the extensive formulation with
an MILP solver. Neither can we compute the exact policies as there are 415 scenarios: we thus
evaluate policies on 1000 randomly selected scenarios.

We can compare the policies obtained for I8,2 in Figure 5.14. First, the policy given by MPC
is far from the optimal value, with a 61% optimality gap, which is reduced to 10% with the
S4 policy. Actually, the policies induced by our approach, on subtrees containing more than
14 nodes, yield a better expected cost than the MPC policy. However, the cost distribution of
the MPC policy is more compact than the other policies, which indicates that outliers impact
significantly its expected cost.

Regarding the computational time of the different methods (see Table 5.2), for I8,2, MPC is the
fastest method, which is not surprising as the problem is small. For the shortsighted and random
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Figure 5.14: Distribution of costs obtained by simulating different policies to solve I8,2, over all
256 scenarios. The expected value of each policy is on top of the figure in green.

strategies, computational time are reasonable until a size of 30. Indeed, the computational time
increases with the size of the subtrees generated to compute a policy. In particular, the IG
policy is heavy to compute: for each time step t ∈ [8], constructing a subtree requires solving |T|
optimization problems. Thus, even with small subtrees, it takes longer than all other methods.
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Shortsighted Random IG MPC

|T | min mean max min mean max min mean max min mean max

6 0.8 1.0 3.0 0.7 1.1 2.3 4.1 6.2 12 0.8 0.2 0.1

14 2.6 4.8 8.5 2.4 3.9 7.2 24 30 44

20 - - - 4.4 9.6 22 45 53 64

30 9.8 26 74 8.9 22 51 130 178 300

Table 5.2: Minimum, average and maximum computational time (in seconds) to simulate a
trajectory with different approaches for I8,2. To compute a policy with our approach, we first
need to run SDDP on the continuous relaxation of the problem, which here takes about 2 seconds.

In Figure 5.15, we present results for a larger instance, I15,4. While the optimal value cannot
be computed due to the extensive problem size, SDDP provides a valid lower bound. The cost
distributions from our approach, regardless of the growing strategy used, are more compact than
those obtained with MPC: this is clear when reading Table 5.5, Additionally, whereas MPC has
an average cost of 1197, our approach performs better with any growing strategy, though only
slightly for S1 and IG4 (with respectively an average cost of 1130 and 1106). Among these, the
random policy outperforms all others, even with small subtrees.

Figure 5.15: Distribution of costs obtained by simulating different policies to solve I15,4, over
1000 scenarios. The expected value of each policy is on top of the figure in green.
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Increasing subtree sizes can significantly improve policy performances. For example, increasing
the size of the subtrees with the random strategy allows to decrease the average cost from 657
with R4 down to 526 with R20. This average cost is again improved with subtrees of size 20
but this comes at the price of higher computational time. For example, with subtrees of size
20 nodes, the average computation time reaches 81 seconds (see Table 5.3). Notably, the IG
strategy is the most computationally expensive (we did not compute IG20 for this reason) and,
despite this, performs worse than the random policies.

Shortsighted Random IG MPC

|T | min mean max min mean max min mean max min mean max

4 1.8 2.9 7.9 2.0 3.6 12 8.1 12 61 1.5 4.9 27

10 - - - 6.7 13 38 43 88 312

20 20 126 504 20 81 496 x x x

Table 5.3: Minimum, average and maximum computational time (in seconds) to simulate a
trajectory with different approaches for I15,4. To compute a policy with our approach, we first
need to run SDDP on the continuous relaxation of the problem, which here takes about 22
seconds.

We observe in Figure 5.15 that some outliers are particularly costly and have a huge impact
on the expected cost of a policy. This is the case for S1 and IG4 where we can see a single
outliers at a cost higher than 60000. Those very costly simulations are due to infeasible solutions.
Indeed, for relatively complete recourse assumptions, we relax hard constraints by penalizing
the violation in the objective. In Table 5.4, we find details on the solutions computed with all
policies regarding the unsatisfied demand (violation of constraint (5.1b)) and the energy budget
violation (5.15). Then, we can see how MPC violates the energy budget constraints way more
than our approach (due to a lack of anticipativity on the uncertain prices), while our approaches
on subtrees that are too small struggle more to satisfy the demand at all time. Finally, in
Table 5.5, we find a table with the percentiles of the distributions represented in Figure 5.15. In
particular, by comparing the mean and the 50% percentile of S1 and IG4, we can explain how
their average cost is so high compared to their distributions in Figure 5.15.

Shortsighted Random IG MPC

|T | (5.1b) (5.15) (5.1b) (5.15) (5.1b) (5.15) (5.1b) (5.15)

4 0.50 0.20 0.06 0.16 0.47 0.20 0.0 0.77

10 - - 0.03 0.10 0.07 0.14

20 0.02 0.09 0.01 0.09 x x

Table 5.4: Average penalization for demand satisfaction (5.1b) and energy purchase bound (5.15)
equations in model I15,4.



124 CHAPTER 5. A GROWING TREE ALGORITHM

4 10 20

MPC S Random IG Random IG S Random

mean 1198 1131 658 1107 567 643 547 526

min 277 326 322 327 321 329 324 323

1% 315 343 339 340 339 341 342 337

10% 363 362 361 360 359 360 361 360

25% 404 382 383 382 381 379 380 378

50% 902 432 433 437 420 422 422 417

75% 1820 748 541 831 507 549 504 489

90% 2513 1959 1440 1959 772 1570 721 637

99% 3929 11165 3078 10540 2994 2677 2490 2400

max 4432 61346 4318 61346 3762 3746 3505 3352

Table 5.5: Percentiles for I15,4.

Conclusion

In conclusion of these preliminary results, our approach shows promise. Indeed, in cases such as
in Section 5.5.4 where MPC performs poorly, and SDDP cannot compute a feasible solution, our
approach can compute feasible policies in a reasonable time. Further, this framework is very
flexible since we could use any approximations of the cost-to-go functions to compute a policy.
Future works will focus on finding a growing strategy that outperforms the random one.



Appendix A

Instance generation

More precisely, for a given size of the instance, i.e., T,Q, I, J , we fix some parameters and draw
others randomly in specific uniform distributions. The values chosen for uniform distributions
are inspired from the application presented in Chapter 3, but adapted to a given instance size.
Then, some parameters are the same for all instances, for example the battery parameters:

SOCmin = 1, SOCmax = 12, ρ = 0.9,Φ = 3.

Then, the production bounds ui,j,min and ui,j,max are randomly drawn from respective uniform
distribution U(30, 55) and U(60, 90). For all instances, i and j, we fix αi,j = 0.001 and we
draw βi,j from uniform distribution U(0.001, 0.06). In the next subsections, we specify for each
instance the actual values on which we tested the different strategies, as well as the demand and
prices.

A.1 Parameters for I3,9

For this instance, we fix the number of machines I = 3 and of products J = 4. As there are few
time steps, there is no stage demand i.e., djt = 0 for t ∈ [3] and j ∈ [4], but a final stock target
sfinal := (59, 58, 41, 63). We set:

β =

1.3 2.3 0.3 2.3

0.3 1.3 0.3 0.3

0.3 0.3 2.3 1.3

 , umin =

45 30 45 47

33 50 46 34

45 45 54 49

 , umax =

67 68 74 76

69 63 79 62

70 63 61 69

 .

The products that are incompatible are the couples in set J = {(1, 4), (2, 3), (3, 4)}. Finally, the

discrete values taken by pgridt at each stage are represented with the matrix:

39 36 41 11 22 30 8 9 12

20 40 33 5 31 20 41 22 45

47 9 5 17 14 47 27 10 14

 .
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A.2 Parameters for I8,2

A.2.1 Application described in Section 5.5.1

For this instance, we fix the number of machines I = 3 and of products J = 4. We set:

β =

0.3 2.3 1.3 0.3

0.3 1.3 2.3 2.3

0.3 0.3 2.3 1.3

 , umin =

33 35 40 44

47 48 48 44

48 35 41 35

 , umax =

61 81 78 74

73 82 86 83

72 83 69 81


The demand and random prices over time are given by:

d =



0 0 0 0

0 0 0 0

0 0 0 0

11 34 25 24

28 10 2 20

2 15 37 24

2 2 5 12

18 10 0 5


, pgrid :=



29 29

43 18

30 35

11 26

9 22

10 46

36 45

38 20


.

Finally, the products that are incompatible are the couples in set
J = {(1, 2), (1, 3), (1, 4), (3, 4)}, and the final stock target is sfinal := (58, 65, 37, 34).

A.2.2 Adaptation when bounding energy purchases

In Section 5.5.4, we add a constraint (5.15) which represents a budget on the energy purchases. We
then test our method on the same instance presented just previously, with slight modifications: the
demand and the final stock target are multiplied by 1.5 and we change the scenarios representing
pgrid:

d =



0 0 0 0

0 0 0 0

0 0 0 0

16.5 51.0 37.5 36

42 15.0 3 30

3 22.5 55.5 36

3 3 7.5 18

27 15 0 7.5


, pgrid :=



20 30

20 30

20 30

20 30

5 40

5 40

5 40

5 40


.

The final stock is thus sfinal := (87, 97.5, 55.5, 51) and we set B = 60.

A.3 Parameters for I5,4

For this instance, we fix the number of machines I = 3 and of products J = 3. We set:

β =

2.3 0.3 2.3

2.3 2.3 0.3

2.3 2.3 1.3

 , umin =

43 34 34

42 48 55

52 32 45

 , umax =

65 89 89

88 81 82

76 90 60


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The demand and random prices over time are given by:

d =


0 0 0

0 0 0

0 0 0

37 12 5

27 2 26

 , pgrid :=


12 41 13 37

37 40 27 38

18 43 28 19

9 49 37 9

47 42 50 20

 .

Finally, the products that are incompatible are the couples in set J = {(1, 3), (2, 3)}, and the
final stock target is sfinal := (136, 102, 55).

A.4 Parameters for I15,4

For this instance, we fix the number of machines I = 3 and of products J = 4. We set:

β =

0.3 1.3 0.3 1.3

1.3 0.3 2.3 1.3

0.3 2.3 0.3 1.3

 , umin =

49 51 37 47

40 35 45 54

40 47 39 54

 , umax =

66 85 60 79

68 62 64 66

86 60 70 66


The demand and random prices over time are given by:

d =



0 0 0 0

0 0 0 0

28 21 27 32

27 3 33 2

5 40 24 24

33 7 5 39

6 28 5 4

12 33 23 35

14 3 16 15

9 14 0 32

7 17 35 30

17 10 40 40

31 26 15 32

15 29 13 8

29 26 26 35



, pgrid :=



20 24 26 30

20 24 26 30

20 24 26 30

20 24 26 30

20 24 26 30

20 24 26 30

20 24 26 30

20 24 26 30

20 24 26 30

4 7 40 45

4 7 40 45

4 7 40 45

4 7 40 45

4 7 40 45

4 7 40 45



.

Finally, the products that are incompatible are the couples in set J = {(1, 3), (2, 3)}, the final
stock target is sfinal := (415, 333, 259, 314), and we set B = 60.
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Appendix B

Additional content on numerical
experiments

In this appendix, we provide tables summarizing the results from Sections 5.5.2 to 5.5.4. In the
tables, a ’-’ indicates subtree sizes that cannot be constructed with the shortsighted strategy,
while an ’x’ signifies results that could have been computed but were not.

B.1 Values and gap of the lower bounds computed

Shortsighted Random IG SB

|T | lb gap lb gap lb gap lb gap

9 21.3 41 21.0 ± 0.03 42 21.3 41 21.3 41

20 - - 21.5 ± 0.04 41 21.5 41 22.6 38

30 - - 22.0 ± 0.04 39 22.0 39 23.7 35

40 - - 22.4 ± 0.06 38 22.6 38 24.8 32

50 - - 22.7 ± 0.07 37 23.2 36 25.7 29

60 - - 23.1 ± 0.08 36 23.8 34 26 28

70 - - 23.5 ± 0.10 35 24.1 34 x x

80 - - 23.9 ± 0.09 34 24.4 33 x x

90 23.0 37 24.1 ± 0.10 0 24.5 34 x x

Table B.1: Lower bounds and optimality gap (in %) obtained with different strategies for I3,9,
where the optimal value is opt= 36.3.
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Shortsighted Random IG SB

|T | value gap value gap value gap value gap

2 57.7 35 57.7± 0.03 35 x x x x

6 58.2 34 59.0 ± 0.2 33 58.2 34 57.7 35

14 58.3 34 61.5 ± 0.2 30 61.6 30 59.1 33

30 69.2 22 64.4 ± 0.3 27 62.6 30 59.8 32

62 72 19 68.0 ± 0.3 23 63.1 29 62.5 29

126 [71.7, 74.3] ≈ 19 x x x x x x

254 75.1 15 x x x x x x

Table B.2: Lower bounds and optimality gap (in %) obtained with different strategies for I8,2,
where the optimal value is opt= 88.5. The interval obtained for the shortsighted strategy with
126 nodes is due to the partially relaxed problem not being solved to optimality: this is the gap
obtained between the best lower bound and the best solution found.

Shortsighted Random IG SB

|T | value gap value gap value gap value gap

4 121.3 25 120.8 ± 0.05 25 x x x x

10 - - 121.1 ± 0.06 25 121.3 25 121.3 25

20 121.3 25 121.6 ± 0.06 25 121.3 25 121.6 25

30 - - 122.1 ± 0.06 24 121.8 24 122.0 24

40 - - 122.6 ± 0.07 24 122.4 24 122.4 24

50 - - 122.9 ± 0.07 24 122.9 24 122.9 24

60 - - 123.4 ± 0.08 23 123.4 23 123.3 23

70 - - 123.9 ± 0.08 23 123.8 23 123.6 23

84 122.7 24 124.6 ± 0.09 23 123.9 23 124.1 23

340 131.9 18 x x x x x x

Table B.3: Lower bounds and optimality gap (in %) obtained with different strategies for I5,4,
where the optimal value is opt= 161.3.

B.2 Simulated policies’ average value and standard deviation
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Shortsighted Random Integrality Gap MPC

|T | mean std mean std mean std mean std

9 47 33 45 31 47 34

20 - - 40 22 44 30

50 - - 37 15 x x

90 36 15 x x x x

36 15

Table B.4: L and best standard deviation of the simulated costs of different growing strategies
over the whole scenario set for I3,9.

Shortsighted Random Integrality Gap MPC

|T | mean std mean std mean std mean std

6 97 22 94 24 98 25

14 89 21 91 23 91 23

20 - - 92 23 91 23

30 - - 92 23 91 23

91 17

Table B.5: Expected value and standard deviation of the simulated costs of different growing
strategies over the whole scenario set for the instance with T = 8 and Q = 2.

Shortsighted Random Integrality Gap MPC

|T | mean std mean std mean std mean std

4 267 181 217 123 205 92

20 180 76 174 70 173 68

167 70

Table B.6: Expected value and standard deviation of the simulated costs of different growing
strategies over the whole scenario set for the instance with T = 5 and Q = 4.
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Part III

Modeling fairness in decision
problems
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Chapter 6

Fairness: from concept to
mathematical models

Contents

6.1 Defining, modeling and accommodating fairness . . . . . . . . . . . . 136

6.2 Mathematical models of fairness . . . . . . . . . . . . . . . . . . . . . 138

6.2.1 Notions of fair solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2.2 Evaluating the fairness of outcomes . . . . . . . . . . . . . . . . . . . . 139

In this chapter, we give a general overview of how fairness is defined and modeled across the
scientific literature, while making the link to our energy application. We first cover some
definitions of fairness, before diving into the existing mathematical treatment of the subject.
This work and the following chapter have been done while visiting Pierre Pinson1 in the second
year of the PhD.

First, we present two examples to illustrate the concepts introduced in this section.

Example 3 (Multiportfolio management). An advisor is in charge of N portfolios with individual
interests across various assets. The aggregation of portfolios can be modeled with the following
optimization model:

Max
{xi}i∈[N ]

∑
i∈[N ]

ri(xi)− c
( ∑
i∈[N ]

xi

)
(6.1a)

xi ∈ Xi ∀i ∈ [N ], (6.1b)

where xi are the trades of i, constrained to be in set Xi, ri is the revenue function, and c the
trading cost function.

Example 4 (Shared Energy storage system (ESS) management). A manager is in charge of
managing an ESS, in which M buildings have invested collaboratively. This example is inspired

1Imperial College of London
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by the problem presented in [Jor+24]. We model the aggregation of buildings with:

Min
{xjt}j∈[M ],t∈[T ]

∑
t∈[T ]

∑
j∈[M ]

cjtq
j
t (6.2a)

pjt + φjt + qjt ≥ d
j
t ∀t ∈ [T ],∀j ∈ [M ] (6.2b)

xjt := (pjt , φ
j
t , q

j
t ) ∈ X

j
t ∀t ∈ [T ]∀j ∈ [M ] (6.2c)

SoCt = SoCt−1 +
∑
j∈[M ]

φjt ∀t ∈ [T ], (6.2d)

where a building j is modeled by djt , its energy demand at time t; pjt , its the energy production at
t; qjt , the quantity of energy bought from the grid at price cjt ; and φjt , if positive (resp. negative),
is the quantity of energy charged to (resp. discharged from) the ESS at t. All variables at t are
constrained by set X jt . Finally, Soct is the State of Charge in the shared battery at t, modeled
with dynamic equations (6.2d).

In both examples, to make all participants benefit from the aggregation, the aggregator must
ensure fair treatment. In Example 3, the advisor must guarantee equitable distribution of market
costs among portfolios. In Example 4, deciding how energy from the shared battery should be
allocated is not straightforward as it affects directly the cost of each prosumer. Therefore, the
aggregator’s choices regarding prosumer access to energy storage has to be fair: should access be
proportional to each building’s investments, based on energy needs, or should alternative criteria
be considered?

6.1 Defining, modeling and accommodating fairness

In the Oxford Dictionary, fairness is defined as the quality of treating people equally or in a way
that is reasonable. The definition is simple but subjective. Is treating people equally, regardless
of any token of individuality, considered fair in society? Furthermore, what does it mean to be
reasonable? Whatever take we have on fairness is necessarily subjective and context-dependent.
We present here some notions of the philosophical approach to fairness (see [Kon03] for a deeper
analysis). We do not pretend to give a thorough description of the philosophical literature, but
merely outline some concepts relevant to the following work.

When speaking of fairness, [Kon03] distinguish fair processes from fair outcomes. By opposition
to fairness, we call unfair a process or an outcome that is not fair. In the first paradigm, fairness
is evaluated not through the outcomes, but through the treatment of each individual in the group
that results in said outcomes. This concept is relevant in Machine Learning, for applications like
granting or denying loans, bail or parole decisions etc. In such problems, the inherent biases in
the data used for algorithm training can lead to unfair predictive outcomes, in the sense that
individuals of a given social class are favored compared to others. Hence, it becomes imperative
to integrate fairness into the learning process and think of ways to assess fairness across different
data populations. We refer to [Jab+17; CH20; RTK22] for more details on the way fairness can
be addressed in machine learning.

On the other hand, the fair outcomes paradigm takes into consideration the individual outcomes
and makes sure that everyone gets their fair share. This approach is favored in game theory
where each individual (or player) is modeled with a utility function whose actual value depends
on the actions of all players. For a given set of actions, we obtain a utility vector, denoted
u := (u1, . . . , un), representing every agent’s utility ui. A utility vector is then said to be fair if
it satisfies a set of properties that might vary from one specific fairness definition to another.
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Among them, individual rationality is key as it ensures every individual is better off in the
aggregation, and therefore accepts to be a part of it. In Example 3, the utility is the benefit
of each agent, whereas in Example 4 the utility is the energy costs of each building. In the
remainder of this paper, we discuss fair outcomes approaches.

Intuitively, fairness can be confused with Egalitarianism where a utility vector is said to be fair
if all coordinates are equal, meaning that everyone gets the same share. For instance, the Gini
coefficient [Gin21] is a commonly used indicator to measure equality—mistaken for fairness—
which evaluates how far a given distribution is from the equal distribution. Although it makes
sense in some applications, it is impractical most of the time since people have unequal access to
resources and different needs: indeed, in Example 4, if we consider equality through the quantity
of energy given from the ESS, we would add constraints ensuring everyone gets the exact same
amount of energy:

T∑
t=1

φjt =
T∑
t=1

φj
′

t ∀j 6= j′.

We can see the limits of such modeling as it would provide too much energy to buildings with
smaller energy consumption. Moreover, it is found to be unpopular in surveys ([Kon03]), as
people feel they get less than they should. Thus, equal resource (and opportunity) distribution
does not always address social inequality.

To counteract these side effects, the Need Principle aims at satisfying basic needs equally first
and then focusing on efficiency. This is a trade-off between need and other distributive goals.
In Example 4, each building could decompose its energy demand djt into the minimum energy
needed njt plus energy asked for comfort sjt . Then, additional constraints (6.3a) can be added to
the aggregation model to ensure that everyone gets free energy to satisfy its needs:

pjt + φjt + qjt ≥ n
j
t + sjt ∀t ∈ [T ], ∀j ∈ [M ],

pjt + φjt ≥ n
j
t ∀t ∈ [T ], ∀j ∈ [M ].

Then, depending on the energy available in the ESS and the energy produced by each building,
the manager dispatches the energy to minimize the aggregated costs of energy bought to the grid.
The Need Principle finds practical application in Euphemia [EUP16], an algorithm developed
to optimize the orders to be executed on the European coupled electricity market. Euphemia
pursues a dual objective: first, equitably distributing curtailment among areas where a portion
of orders are unaccepted; and second, maximizing social welfare by optimizing the total market
value in the Day-Ahead auction. The emphasis is on maximizing order acceptance for each area,
and then the algorithm seeks an efficient solution.

A different approach was introduced by [Raw71]: assuming that a group of individuals has no
idea of their rank or situation in society, they will agree on a social contract aiming at maximizing
the well-being of the least well-off. If the agents possess distinct characteristics, it might be
difficult to compare them and ensure equitable treatment among them. This approach to fairness
is often referred to as minimax fairness, as this amounts to optimizing for the worst objective
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among agents. In Example 3, the minimax aggregator is modeled as:

Max
x,t

min
i
{ ri(xi)− ti } (6.3a)

s.t. xi ∈ Xi ∀i ∈ [N ] (6.3b)∑
i∈[N ]

ti = c

∑
i∈[N ]

xi

 , (6.3c)

where ti represents what the aggregation charges portfolio i for trading. Then, (6.3c) ensures the
sum of cost charged to portfolios equals to the trading cost of the aggregation. This amounts to
having transfer variables in-between agents, which is proposed by [IT14] to solve a multi-portfolio
problem with fairness considerations. We avoid transfer variables in this paper, as they may
raise privacy and trust concerns in practical application. Instead, we simplify the approach by
designating the aggregator as the sole entity with complete information on the problem.

Now that we have presented some of the philosophical concepts that define the foundations of
fairness, we discuss in the following mathematical ways to model and assess fairness.

6.2 Mathematical models of fairness

6.2.1 Notions of fair solutions

For more than a century, fairness or inequality has been widely discussed in the literature. The
first fairness notion can be traced back to [Par14]: a utility vector is said to be Pareto optimal if
there are no other accessible utility vector where an individual is better off without negatively
impact another. Pareto optimality does not imply fairness in a solution, but guarantees a stability.
This concept is also used when trying to find a balance between multiple objectives: traditionally
in portfolio management to find a trade-off between a high expected revenue and low risk. In
our context, this can be adapted as we look for a trade-off between the total revenue of the
aggregation (efficiency) and the fairness of the solution.

One of the main challenges facing fairness challenges is that of resource allocation among agents.
This naturally falls into the scope of game theory. In a founding article [Nas50], John Nash
introduced the bargaining problem where two rational agents, allowed to bargain, try to maximize
the sum of their utilities. Agents are rational, hence individual rationality is ensured through a
disagreement point, which is the strategy decided by players if they cannot reach an agreement.
As agents can cooperate, they must have an agreement on properties a utility vector, u, should
satisfy. Nash proposed four axioms to constitute this agreement: Pareto optimality ; Symmetry,
applying the same permutation to two utility vectors does not change their order; Independence
of irrelevant alternatives, if a utility vector is the optimal utility vector within the feasible set,
it remains so if the set is reduced. Scale invariance: applying affine transformations to the
utility vector does not change the social ranking. Then, he showed that, under a number of
assumptions (among them, the set of feasible utility vectors must be convex and compact), there
exists a unique utility vector satisfying those axioms. This unique utility vector is regarded in
the literature as a viable option when seeking fairness. It has been demonstrated that under
convexity of the feasible set, it can be obtained by maximizing the product of utilities ([Nas53;
Mut99]), and thus by maximizing a logarithmic sum of utilities:

max
u∈U

N∑
i=1

log(ui − di),
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where u ∈ U is a feasible utility vector among N players, and d the disagreement point. This
approach is referred to as proportional fairness. Some papers criticized the Independence of
irrelevant alternatives for having undesirable side effects. To overcome those issues, [KS75]
proposed to replace it with a monotonicity axiom, resulting in another unique utility vector, and
a slightly different vision on fairness.

In opposition to bargaining games, cooperative games study games where forming coalitions is
allowed. In this theory, it is assumed that players can achieve superior outcomes by cooperating.
Players must establish their common interest and then work together to achieve it, which
requires information exchanges. In [Sha52], Shapley studied a class of functions that evaluate
players participation in a coalition. Considering a set of axioms (symmetry, efficiency and law of
aggregation), Shapley showed that there exists a unique value function satisfying those axioms.
He derived an explicit formula to compute the value of a player i in a cooperative game with a
set N of players:

φi(v) =
∑

S⊂N\{i}

(
|N | − 1

|S|

)−1 (
v(S ∪ {i})− v(S)

)
,

where v(S) gives the total expected sum of payoffs the cooperation S can obtain. The values
obtained {φi(v)}i∈N are called Shapley values. They are considered as a fair redistribution of
gains in the group. However, they are very hard to compute in practice (as the size of the
problem grows, those values are not computable).

6.2.2 Evaluating the fairness of outcomes

As we study fairness, we naturally look for ways to measure it. In [Lan+10], the authors proposed
a mathematical framework based on five axioms (continuity, homogeneity, saturation, partition
and starvation) to define and evaluate fairness measures of utility vectors. They established a
class of functions satisfying those axioms, which comprises various known measures on fairness,
such as Atkinson’s index, α−fairness, Jain’s index etc. Removing the axiom of homogeneity, this
class is extended to measures looking for a trade-off between fairness and efficiency. Although a
variety of indices exist, the Gini coefficient, mentioned before, is the most commonly used. For
example, in a recent paper [Hey+19] studying the fairness in power system reliability, the authors
compared a Gini-based index to a variance-based index (similar to the standard deviation index).

When fairness is considered in the problem (through the objective or constraints), it comes at a
price: a fair solution might not be the most efficient one. Indeed, many articles try to find a
balance between efficiency (have the best objective possible) and fairness (have a fair solution). In
[BFT11], the authors established bounds on the price of fairness for two approaches (proportional
fairness and minimax fairness) in resource allocation problems among self-interested players.

In this section, we referred to work that lay the foundations of fairness modeling in mathematics.
For a more complete review, we refer to [XH23] where the authors provided guidelines for readers
to choose the appropriate definition and modeling of fairness. They went through the list of
indicators and criteria that exist to measure and define fairness. However, they assumed that
fairness can always be reflected through the social welfare function (which corresponds to utilities
in game theory) of agents. This means that the well-being of different agents are comparable
through a single value.
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In this chapter, we derive tools to model fairness in an aggregation problem, leveraging the
discussion on the concept of fairness in Chapter 6. The content of this chapter led to preprint
[FLP24] and is currently under review in Computational Management Science.

7.1 Introduction

Many domains, such as telecommunication networks, healthcare, disaster management, and
energy-sharing systems, require fairness as a key criterion. However, fairness is not easy to
define or implement, as it can have different meanings and implications in different contexts.
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Nevertheless, mathematical models that address real-world problems should not ignore fairness,
even if it adds complexity to the problem. In this paper, we investigate various methods to
incorporate fairness in a multi-agent problem. Specifically, we apply fairness to the problem
of aggregating prosumers, who are both electricity producers and consumers, in the electricity
market.

We focus on electric energy management application, where the aggregation of prosumers is
becoming more relevant due to the increasing number of prosumers. Renewable energy generation
capacities are becoming more affordable and effective, as renewable energy investments are rising
(19% in 2022, according to a report by [Intd] on global trends in renewable energy). This enables
smaller prosumers, such as medium-sized industries, to invest in onsite energy generation and
storage. However, prosumers are usually too small to access the electricity market directly,
so some companies offer to aggregate them in electricity markets. For example, CPower is an
American company that aggregates a total of 2.000 MW of power [CPO]. We refer to [CJA17]
for an extensive review on aggregators and their role in electricity markets.

Those aggregators can be external entities responsible for every prosumer energy transfers.
In this case, there is a necessity to think of how the aggregation affects the participants to
ensure a fair allocation of benefits. This is highlighted in a report [EUR15] on designing fair
and equitable market rules for demand response aggregation, published by the association
representing the common interests of the European electricity industry, Euralectric. Indeed, there
is a practical need to guarantee that each prosumer benefits from staying in the aggregation.
Further, prosumers need to feel like they are not being disfavored compared to others, leading
the aggregator to choose a solution with a fair allocation of benefits.

In the literature, one distinguishes two main approaches in handling fairness: solve the problem
efficiently and then reallocate the benefits [YHS21; Wan+19; Yan+23]; or change the objective
function in order to get a fair solution [XH23]. In the first approach, we model a multi-agent
problem with a utilitarian objective, i.e., we optimize the aggregated objectives of agents. Then,
a protocol is implemented to reallocate the benefits among agents. For example, Shapley values
[Sha52] assess the marginal contribution of each agent in the group and determine their fair
share. The second approach prioritizes fair solutions through the modeling by changing the
objective function. We refer to [XH23] for a comprehensive overview and guidelines on selecting
an appropriate objective function to reflect fairness. The two most studied objective functions
are the minimax objective [Raw71], which optimizes the least well-off agent’s objective, and the
proportional objective [Nas50], derived from Nash’s bargaining solution, which optimizes the
logarithmic sum of agents’ objectives. Note that this approach, through the objective function,
means that the well-being of different agents are compared through a single value.

However, these approaches present some limitations. On the one side, the proportional and
minimax approaches focus merely on the objective function and not decisions. This can be a
problem, as in some applications there can be different characteristics which are valuable. For
example in an energy contract, both the flexibility and the volume of energy traded are important
features. Thus, it is hard to take into account both of them when the quality of a solution is
determined by a single value. On the other hand, post-allocation distributions of benefits are
not adapted to problems that are formulated over long periods of time, such as contracts in
electricity markets. Indeed, those approaches require to solve the whole problem before allocating
costs. Then, it is impractical in most cases to expect each agent to wait until the problem’s
completion, which could span several months or years, to receive their fair share. Furthermore,
given the inherent uncertainties linked to most problems, we also want our approach to hold in a
stochastic framework. Then, fairness criteria must be redefined considering utility distributions
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and associated risks over time.

In this paper, we introduce various strategies for integrating fairness considerations into opti-
mization problems. Our primary focus is what we refer to as fairness-by-design. Instead of
relying on ex post redistribution, as is usual in game theory [Sha52], we can establish a degree of
fairness directly within the model. Our main contribution is to provide a framework and tools
to accommodate fairness into mathematical models, in particular in the context of prosumer
aggregation. What sets our approach apart is the extension of this framework to dynamic and
stochastic settings, allowing for risk-averse and time-consistent guarantees.

More specifically, we present two key elements for achieving fair allocation in an aggregation.
First, we model fair cost allocation through an operator ordering the costs of the different
prosumers. For the choice of this operator, we present three traditional approaches (utilitarian,
proportional and minimax ). Additionally, we propose acceptability constraints that ensure
each agent’s outcome improves in a predefined sense within the aggregation. In their simplest
form, these acceptability constraints correspond to individual (or self) rationality in game
theory, ensuring each agent benefits from being in the group. We then extend the problem to a
dynamic framework where decisions are made sequentially over time. In this context, agent’s
cost are multidimensional, the acceptability (or individual rationality) constraints thus need
to choose a (partial) order. We discuss a few relevant partial order choices. Similarly, in a
stochastic framework, agents cost are random variables, and we discuss relevant stochastic orders.
Compared to [GKW23], who propose a risk-averse stochastic bargaining game, our approach
handles uncertainties through the objective function but also acceptability constraints. This
enables us to consider various aspects of the impact of uncertainties on the problem. As a
result, our proposed model is well-suited for addressing inherent uncertainties within multistage
stochastic programs, enhancing its practical applicability. Finally, we assess these different
strategies on a toy model where we aggregate 4 electricity consumers to access the day-ahead
market. We discuss each modeling choice consequences.

The remainder of the paper is organized as follows. In Section 7.2, we delve into definitions
of fairness and its integration into optimization models. We propose, in Section 7.3, to model
prosumers aggregation with acceptability constraints and a fair objective function. We then
illustrate the introduced framework on a toy model in Section 7.4. Section 7.5 expands the notion
of acceptability into the dynamic framework, while Section 7.6 adapts acceptability and fairness
to the stochastic framework.

Notations

To facilitate understanding, we go through some notations used in this paper. We denote
[N ] := {1, . . . , N} the set of non-null integers smaller than N. Accordingly, X[n] denote the
collection {Xi}i∈[n]. Random variables are denoted in bold characters, with their realization is
normal font. The σ−algebra generated by {ξτ}τ∈[t] is denoted σ(ξ[t]). Finally, in this paper, the
term operator always refers to a mathematical operator.

7.2 Fairness in the literature

In the Oxford Dictionary, fairness is defined as the quality of treating people equally or in a way
that is reasonable. The definition is simple but subjective. Is treating people equally, regardless
of any token of individuality, considered fair in society? Furthermore, what does it mean to be
reasonable? Whatever take we have on fairness is necessarily subjective and context-dependent
(see [Kon03] for a philosophical analysis of fairness). In this section, we give a general overview of
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how fairness is defined and modeled across the scientific literature, while linking it to our energy
application. Bear in mind that each approach on fairness adopts a specific definition of fairness,
which is not consensual.

7.2.1 Modeling and accommodating fairness

One of the main challenges facing fairness is the allocation of resources between agents. This
naturally falls into the scope of game theory, where each of the N individuals (or players) is
modeled with a utility function whose actual value depends on the actions of all players. For a
given set of actions, we obtain a utility vector, denoted u := (u1, . . . , uN ), representing the utility
of every agent ui. A utility vector is then said to be fair if it satisfies a set of properties that
might vary from one specific fairness definition to another. Among them, individual rationality,
which ensures that every individual is better off in the aggregation, and therefore accepts to be a
part of it, is often required.

In a seminal contribution [Nas50], John Nash introduced the bargaining problem where two
rational agents, allowed to bargain, try to maximize the sum of their utilities. If agents are
rational, individual rationality must be ensured. This is modeled using a disagreement point
which represents the outcome obtained by players if they cannot reach an agreement. For agents
to cooperate, they must agree on properties a utility vector, u[N ], should satisfy to be admissible.
Nash proposed four axioms to constitute this agreement: Pareto optimality – we cannot improve
the utility of one agent without decreasing another’s utility; Symmetry – applying the same
permutation to two utility vectors does not change their order; Independence of irrelevant
alternatives – if a utility vector is the optimal utility vector within the feasible set, it remains so
if the set is reduced; Scale invariance – applying affine transformations to the utility vector does
not change the social ranking. Nash showed that, under some assumptions including convexity
and compactness of feasible utility vectors, there exists a unique utility vector satisfying those
axioms. This unique utility vector is regarded in the literature as a viable option when seeking
fairness. It has been demonstrated that under convexity of the feasible set, it can be obtained by
maximizing the product of utilities ([Nas53; Mut99]), and thus by maximizing a logarithmic sum
of utilities:

max
u∈U

N∑
i=1

log(ui − di),

where u ∈ U is a feasible utility vectors among N players, and d the disagreement point. This
approach is referred to as proportional fairness. Some papers criticized the Independence of
irrelevant alternatives for having undesirable side effects. To overcome those issues, [KS75]
proposed to replace it with a monotonicity axiom, resulting in another unique utility vector and
a slightly different vision on fairness.

In contrast to bargaining games, cooperative games study games in which coalition formation is
allowed: see [OR94] for a complete introduction. In this theory, it is assumed that players can
achieve superior outcomes by cooperating. Players must establish their common interest and
then work together to achieve it, which requires information exchanges. In transferable utility
games, payoffs are given to the group which then divides among players through a post-allocation
scheme. In [Sha52], Shapley studied a class of functions that evaluate the participation of players
in a coalition. Considering a set of axioms (symmetry, efficiency and law of aggregation), Shapley
showed that there exists a unique value function satisfying those axioms. He derived an explicit
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formula to compute the value of a player i in a cooperative game with a set N of players:

φi(v) =
∑

S⊂N\{i}

(
|N | − 1

|S|

)−1 (
v(S ∪ {i})− v(S)

)
,

where v(S) gives the total expected sum of payoffs the coalition S can obtain. The values
obtained {φi(v)}i∈N are called Shapley values. They are considered a fair redistribution of gains
in the group. However, they are very hard to compute in practice (as the size of the problem
grows, those values are not computable).

A different approach was introduced by John Rawl in [Raw71]: assuming that a group of individ-
uals has no idea of their rank or situation in society, they will agree on a social contract aiming
at maximizing the well-being of the least well-off. If the agents possess distinct characteristics, it
might be difficult to compare them and ensure equitable treatment among them. This approach
to fairness is often referred to as minimax fairness, as this amounts to optimizing the worst
objective among agents.

When fairness is considered in the problem (through the objective or constraints), it comes
at a price: a fair solution might not be the most efficient one. Indeed, many articles try to
find a balance, or trade-off, between efficiency (have the best objective possible) and fairness
(have a fair solution). In [BFT11], the authors established bounds on the price of fairness for
two approaches, previously introduced– proportional fairness and minimax fairness– in resource
allocation problems among self-interested players.

In this section, we referred to work that lay the foundations of fairness modeling in mathematics.
In the following section, we present some applications of aggregations and the way fairness is
considered or evaluated.

7.2.2 Applications of fairness in the literature

In this paper, we focus on a by-design approach, meaning that fairness is already accommodated
in an optimization model. Although fairness is commonly recognized as crucial, in most articles
the approach adopted derives from act utilitarianism: one should at every moment promote the
greatest aggregate happiness, which consists in maximizing social welfare regardless of individual
costs. For example, in [Xia+20], the authors studied an aggregator in charge of multiple agents
within a power system. They optimized the total revenue of the aggregation without considering
the impact on each agent individually. In [MP19], a prosumers’ aggregator can focus on different
indicators (import/export costs, exchange with the system operator, peak-shaving services etc.)
to optimize its trades with the energy market, and the trades between prosumers. The indicator
to focus on must be agreed on by the prosumers. The authors gave a sensitivity analysis of the
parameters of the problem to determine what would increase the social acceptability of such an
aggregation system. However, the model is utilitarian as it does not consider the allocation of
costs among agents.

Other papers have proposed to first optimize the problem and then handle fairness through
benefit post-allocation schemes. One way to deal with post-allocation is to model the aggregation
as a coalitional game. This is the case of [Fre+15], where the authors studied a risk-averse
renewable-energy multi-portfolio problem. In order to get a fair and stable allocation of profits,
they chose the Nucleolus approach which finds a vector utility that minimizes the incentive to
leave the aggregation for the worst coalition. In particular, this solution is in the core of the
game, meaning every players gains from staying in the grand coalition. Similarly, in [YHS21],
the authors studied a group of buildings with solar generation that mutually invest in an ESS.
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The approach is to, first, optimize the problem formulated as a two-stage stochastic coalition
game. Then, a fair reallocation of costs is determined by computing the nucleolus allocation
which minimizes the minimal dissatisfaction of agents.

Some papers propose different methods to elaborate post-allocation schemes. For example in
[Yan+23], the authors studied the joint participation of wind farms with a shared energy storage.
The solution is found by first solving a two-stage stochastic program, and then reallocating the
lease cost among users in a proportional scheme. They chose to make a wind farm pay depending
on its increase of revenue after using the energy storage leasing service. In [Wan+19], the authors
valued cooperation in their model, which is another way to look at cost redistribution. They
considered an aggregator which participates in capacity and energy market for a number of energy
users. In their model, the aggregator is not in charge of the users decisions but of the trades with
the energy market, therefore he must incentivize users to deviate from their optimal scheduling
for minimizing total revenue. They proposed to solve an asymmetric Nash bargaining problem
to determine the incentizing costs. In another approach, the authors solved a multi-portfolio
problem with fairness considerations in [IT14]. Instead of splitting the market impact costs in a
pro-rata fashion, they introduced charging variables, constrained to satisfy some properties, that
are optimized in the model. This approach amounts to having transfer variables, which we avoid
in this paper, as they may raise privacy and trust concerns in practical application. Instead, we
simplify the approach by designating the aggregator as the sole entity with complete information
on the problem, which pays directly agents depending on their actions.

Typically, fairness is dealt with through the objective function, or in a post-allocation scheme.
However, some researchers proposed constraints to ensure fairness. For example in [AKY22],
the authors constrained the allocation feasibility set for a resource allocation problem. They
introduced a welfare function dominance constraint: the admissible set of social welfare functions
must dominate a referenced one. Then, with a utilitarian objective, a trade-off between fairness
and efficiency is obtained. An alternative approach, proposed in [Oh22], is to bound a fairness
indicator. The authors studied the energy planning of multiple agents over a virtual energy
storage system (VESS), where energy dispatch is managed by an aggregator. They introduced
two fairness indicators depending on the energy allocation, and added constraints bounding them
in a utilitarian model. Then, they compared the results with a minimax approach, where they
optimize the minimal fairness indicator over agents.

In many cases, uncertainties are inherent to the problem. If multiple articles have dealt with
uncertainties, they rarely have a stochastic take on fairness. For example, in both [Yan+23] and
[YHS21], the authors solved their problem with a two-stage program and then redistributed the
costs fairly after uncertainty realization. Thus, there is no stochastic policy for fair redistribution.
Other articles accommodated risk-averse profiles to game theory approaches. In [GKW23],
the authors studied a risk-averse extension of the Bargaining Problem. They adapted Nash
bargaining axioms to constrain the feasible utility vectors depending on the risk profile of players.

7.3 A shared-resource allocation problem in the context of a
prosumer aggregator

We present here a general framework where a so-called aggregator aggregates independent agents’
needs (industrial prosumers, residential units, virtual power plants. . . ) and makes economic
transactions for the collective. To make aggregation contracts attractive to agents, we encounter
two distinct challenges: first, each agent needs to find the contract acceptable, ensuring that
each agent derives substantial benefits from the aggregation; second, the decisions made by
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the aggregator, leading to benefits or losses for each agent, should be made fairly. Recall that,
for practical reasons, we do not allow money transfers between agents. Finally, to align with
standard optimization frameworks, we aim to minimize the costs of agents and thus consider
them as buyers.

In the following, Section 7.3.1 formalize the setting, Section 7.3.2 explore various objective
functions that model fair decisions, and finally Section 7.3.3 introduce acceptability constraints.

7.3.1 Prosumers and market structure

We denote by xi ∈ X i the set of state and decision variables modeling an agent i. The technical
constraintsproper to agent i are represented through feasible set X i, while external constraints
(for instance market exchanges), common to all agents, are represented with feasible set M.
Finally, each prosumer wants to minimize a cost function Li : X i → R, yielding the model (P i).
Note that (P i) can model problems in various contexts. In Section 7.4, we present the particular
application of this framework to prosumers aggregation on energy markets.

We now consider an aggregator in charge of I agents, we denote x := (xi)i∈[I]. The aggregator in

problem (A), aggregates agents’ decisions into h(x1, . . . , xI) to satisfy external constraints M
(see (7.1c)). Further, the physical constraint of each agent must be conserved (see (7.1b)), while
the external constraints bind all agents’ decisions. Finally, on the one hand, constraint (7.1d)
ensures that the cost of an agent i is within an acceptable set Aiα they have agreed on prior to
optimization. On the other hand, FI is the agent operator that computes the objective of the
aggregator considering the I objective functions of all agents. Depending of the choices of the
acceptability sets Aiα and the agent operator FI , discussed, respectively, in Section 7.3.2 and
Section 7.3.3, We have obtained different approaches to the shared resource allocation problem.

(P i) Min
xi

Li(xi) (A) Min
x

FI((Li(xi))i∈[I]) (7.1a)

s.t. xi ∈ X i s.t. xi ∈ X i ∀i ∈ [I] (7.1b)

xi ∈M. h(x1, . . . , xI) ∈M (7.1c)

Li(xi) ∈ Aiα ∀i ∈ [I]. (7.1d)

We assume that the aggregation can decide that it is optimal for agents to operate independently
i.e., if xi is an optimal solution of (P i), then (x1, . . . , xI) is an admissible solution of (A).

7.3.2 Fair cost aggregation

Assuming that all agents have agreed to participate in the aggregation (we discuss acceptability
in Section 7.3.3), we focus on the way the aggregator operates to allocate aggregation benefits
among prosumers.

The most natural and efficient method is the so-called utilitarian approach:

FUI ((Li(xi))i∈[I]) =
∑
i∈[I]

Li(xi). (7.2a)

This approach aims to minimize total costs independently from the distribution of costs among
prosumers: fairness is set aside. Indeed, in case of heterogeneity of the objective functions, it is
possible that one of the objective function Li dominates the others, i.e.,

Li(xi) ≥ Lk(xk), ∀xi ∈ X i, ∀xk ∈ X k,
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in which case all efforts of the aggregation are focused on minimizing the dominant objective
function. A possibility that falls out of the scope of this paper (see Section 7.2.1) is to solve
(A) and then reallocate resources with a fair scheme or put money transfers in place. We study
alternative agent operators that ensure fair allocation for various fairness definitions.

First, we consider the proportional approach based on Nash bargaining solutions (see Section 7.2.1).
For this approach, we consider the set of reachable (dis)utilities L =

{
(L1(x1), . . . , LI(xI) | xi ∈

X i, ∀i ∈ [I], M ixi ∈M
}

, and set the optimal values of (P i), vi 1, as the chosen disagreement
point. Then, Nash [Nas50] introduces a set of axioms that must respect a fair distribution
of (dis)utilities, and show that, if L is convex and compact, there exists a unique (dis)utility
vector satisfying those axioms. Furthermore, it is proven that Nash’s distribution is obtained by
maximizing the sum of logarithmic utilities. For our problem, it corresponds to using the agent
operator :

FPI ((Li(xi))i∈[I]) := −
∑
i∈[I]

log(vi − Li(xi)). (7.2b)

Note that this approach tends to act in favor of smaller participants. Indeed, increasing a small
cost improvement is preferred to increasing an already large cost improvement.

Finally, Rawls’ theory of justice leads to the minimax approach favoring the least well-off. Here,
the operator we obtain is:

FMM
I ((Li(xi))i∈[I]) := max

i∈[I]
Li(xi). (7.2c)

For similar reasons to the utilitarian approach, this method may not be adequate for heterogeneous
agents as it only focuses on minimizing the dominant objective function. To address this issue, we
quantify an agent’s well-being by looking at the proportional savings he makes in the aggregation.
Then, applying Rawls’ principle, we minimize the maximum proportional costs over agents, and
we obtain the following agent operator:

FPMM
I ((Li(xi))i∈[I]) := max

i∈[I]

Li(xi)

vi
, (7.2d)

which we refer to as the Scaled Minimax approach. Note that in both the scaled minimax
approach (FPMM

I ) and the proportional approach (FPI ), there are multiple solutions with
different aggregated costs. We assume here we have defined a way to select a solution among
them.

7.3.3 Acceptability constraints

Having delineated several methodologies for equitable cost distribution, we must convince agents
to be part of the aggregation. We consider that agents are individually rational, that is a contract
cannot be deemed acceptable if at least one agent is not better off independently i.e., vi ≤ Li(xi),
where Li(xi) is the cost of i in the aggregation. We can go one step further and require that,
to find the contract acceptable, they benefit from it, i.e., vi > Li(xi). We thus define the
acceptability set Aiα appearing in (7.1d) as follows:

Aiα :=
{
ui | ui ≤ α vi

}
, (7.3)

1We implicitly assume here that either there is a unique solution, or that we have defined a way to select a
solution among the set of optimal solutions.
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where α ∈ (0, 1] is given. Then, we say a solution is α−acceptable if it is contained in Aiα.

Acceptability sets are independent from one agent to another. We then define global acceptability
as the cartesian product of all acceptability sets Aα := Ai1α × · · · × AiIα .

Enforcing acceptability constraints to (A) restricts the feasible solution set, potentially leading
to higher aggregated cost. We define the price of acceptability as

PoA := v?Aα − v
?
∅, (7.4)

where v?Aα is the optimal value of (A) with acceptability constraints Aα, and v? is the optimal
value of (A) without them.

Remark 8. In the scaled minimax model with agent operator FPMM
I , the optimal solution is

1−acceptable. Indeed, if the agents don’t take advantage of the aggregation, then Li(xi) = vi

and we get a feasible solution with respect to Aα of optimal value 1. Further, if we consider the
problem:

Min
α

α (7.5a)

s.t. xi ∈ X i ∀i ∈ [I] (7.5b)

h(x1, . . . , xI) ∈M (7.5c)

Li(xi) ∈ Aiα ∀i ∈ [I], (7.5d)

it is equivalent to problem (A) with agent operator FPMM
I with no acceptability constraints:

Min
x

Max
i∈[I]

Li(xi)

vi
(7.6a)

s.t. xi ∈ X i ∀i ∈ [I] (7.6b)

h(x1, . . . , xI) ∈M. (7.6c)

Then, when we linearize the maximum in (7.6a), we fall back into Problem (7.5), by definition of
Aiα.

Remark 9. Note that our problem with the proportional operator FPI necessarily yields a solution
(1−ε)−acceptable, with ε > 0. Indeed, if for agent i, Li(xi) ≥ vi, then log(vi−Li(xi)) is undefined.

For simplicity, in the rest of the paper, we assume α = 1. We later discuss how to extend
the acceptability constraint to a dynamic (see Section 7.5.2) and stochastic framework (see
Section 7.6.3). Finally, combining different objective functions with acceptability constraints, we
observe on a small illustration their impact on the solution in the following section.

7.4 Application to consumer aggregation on the day-ahead and
balancing market

In this section, we adapt and illustrate the framework presented in Section 7.3 to the problem
of prosumers aggregation on electricity markets. More specifically, the prosumers have access
to: the day-ahead market, where every day at 2 pm, prices and electrical energies are set for all
across Europe for the twenty-four hours of the next day; and the balancing market on which
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t 1 2 3 4 5

pDAt 2 16 1 10 1

pBt 6 25 5 15 5

qDA
t

11 11 11 11 11

A1 A2 A3 A4

q
i

0 5 0 2

qi 5 5 4 3

Qi 10 25 8 15

Table 7.1: Parameters values

prosumers must buy or sell electricity at real-time prices to ensure power system balance. A
minimum trade of 0.1 MWh of energy is required to participate in the day-ahead market.

We propose a toy model to illustrate the implications of each model proposed in Section 7.3.
Therefore, we consider a problem with four consumers (I = 4) on five stages (T = 5). At each
stage t, we must decide how much energy qDAt,i (resp. qBt,i) to purchase from the day-ahead (resp.

balancing) market for consumer i. Thus in (P i), we have xi := (qDAt,i , q
B
t,i). Each consumer has

bounds [q
i
; qi] on its electricity consumption, and a total consumption Qi to meet at the end of

the horizon, amounting to feasible set X i. Note that the upper bounds on electricity consumption
simplify physical constraints that would ensure a finite volume of traded electricity. We introduce
binary variables bDAt , representing the decision to buy a day-ahead, to model the minimum
volume requirement for the day-ahead market, which composes the external constraints M. The
objective for consumer i is to minimize its electricity costs:

Li(xi) =
T∑
t=1

[ pDAt qDAt,i + pBt qBt,i ], (7.7a)

where pDAt (resp. pBt ) is the price of electricity at t on the day-ahead (resp. balancing) market.
We obtain the simple prosumer (P i) and the aggregated model (A):

(P i) Min
xi

Li(xi) (A) Min
x
FI
(

(Li(xi))i∈[I]

)
(7.7b)

s.t. q
i
≤ qDAt,i + qBt,i ≤ qi ∀t s.t. q

i
≤ qDAt,i + qBt,i ≤ qi ∀t,∀i (7.7c)

T∑
t=1

(qDAt,i + qBt,i) ≥ Qi
T∑
t=1

(qDAt,i + qBt,i) ≥ Qi ∀i (7.7d)

qDA
t
bDAt ≤ qDAt,i ≤M bDAt ∀t s.t. qDA

t
bDAt ≤

∑
i∈[I]

qDAt,i ≤MbDAt ∀t (7.7e)

bDAt ∈ {0, 1} ∀t, s.t. bDAt ∈ {0, 1} ∀t, (7.7f)

where F is the chosen agent operator for the aggregation. We solve this small problem with the
utilitarian operator FUI , with the scaled minimax operator FPMM

I and with the proportional
operator FPI . For all agent operator , we solve the problem with and without acceptability
constraints, with α = 1. In the proportional and scaled minimax approaches, we do not optimize
the aggregated costs. As the optimal solution is not necessarily unique, there can be different
optimal solutions with different aggregated costs. Among those, we choose one with minimum
aggregated costs.

We refer to the model with agent operator f ∈ {U, SM,P} (for Utilitarian, Scaled Minimax
and Proportional) and acceptability constraints set a ∈ {∅, α} (for no acceptability constraints,
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or acceptability constraints given by Aα) as mf
a , and A = ∅ corresponds to a model without

acceptability constraints. Finally, we compute here Shapley’s values (see Chapter C for more
details), which are commonly recognized as a fair solution, to compare them to the solutions we
obtain with our models.

We show on a small artificial illustration how all these models can lead to different solutions. Each
model can be evaluated through two metrics: first, the efficiency of the model i.e., the overall
costs of the aggregation; second, the fairness of the model i.e., how distributed are the costs over
prosumers. For the prosumers’ parameters and market prices we use the data on Table 7.1. We
observe the allocation of costs over consumers on Figure 7.1, the resulting percentage of savings
made by each consumer on Table 7.2, and the detail of day-ahead and balancing purchases on
Table 7.3.

First, it’s worth noting that none of the consumers can individually access the day-ahead market
as for any prosumer qi ≤ qDAt and thus constraint (7.7e) excludes any purchase on the day-ahead

market. In the utilitarian model mU
∅ ,the primary focus is to minimize aggregated costs, making it

optimal to always consistently access the day-ahead market as a group. To achieve this, consumer
A1 redistributes its energy load across 4 time steps, incurring a higher individual cost (64%
higher) than when acting independently. By adding acceptability constraints to the model (mU

α ),
the model loses in efficiency but now satisfies individual rationality: PoA = 3% of mU

∅ ’s costs.
We observe that the aggregated costs of consumers slightly increases, but now the charge of
energy needed to access the day-ahead market is shared between A1 and A3, although A3 does
not gain anything from the the aggregation (0% of savings).

(P i) mU∅ mUα mSM∅ mSMα mP∅ mPα
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Figure 7.1: We observe the result of the static Problem (7.7f) with parameters given in Table 7.1.
The bars correspond to the outcome of different models, the number above being the total cost.
The first bar is the non-aggregated model: we solve each (P i) independently. Then, there are
three groups of two bars, each group corresponding to a choice of agent operator (FUI ,FPMM

, FPI ).
Then, for each objective function, we present the results of the model, first without and then with,
acceptability constraints Aα, with α = 1. Each bar is decomposed in 4 blocks corresponding to
the cost incurred by each consumer i. At the top of each bar, we can read the sum of aggregated
costs in the corresponding model.
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Table 7.2: Percentage of savings vi−Li(xi)
vi

made by Ai in the model mf
a depending on agent

operator f ∈ {U, SM,P} and acceptability set a ∈ {∅, α} and PoA (in percentage) of the
corresponding model.

Utilitarian FUI Minimax FPMM
I Proportional FPI

A1 A2 A3 A4 PoA A1 A2 A3 A4 PoA A1 A2 A3 A4 PoA

∅ -64 46 72 46 0 60 30 30 30 0 74 21 80 21 0

Aα 48 37 0 37 4 60 30 30 30 0 74 21 80 21 0

Shapley 114 20 111 28 0

Conversely, the proportional solution (from model mP
∅ ) adopts a more bargaining-oriented

approach, resulting in collaboration only during time slots (t ∈ {1, 3, 5}) with lower prices.
Indeed, as A1 and A3 are not forced to consume energy at all times (q

1
= q

3
= 0), they can

shift their consumption to time slots with lower prices. On the contrary, A2 and A4 must always
consume energy (q

2
= 5, q

4
= 2), and the two of them together cannot access the day-ahead

market either. Thus, in mP
∅ , the solution is for A1 and A3 to consume only in time steps {1, 3, 5},

which leaves A2 and A4 to operate independently at t = 2, t = 4, resulting in limited savings
(21%) compared to the scaled minimax approach (mSM

∅ ). As noticed in Remark 9, the solution

is necessarily 1-acceptable. Therefore, the solution is the same in mP
∅ and mP

α . Moreover, the
proportional solution yields the worst aggregated costs i.e., the less efficient solution.
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A1 A2 A3 A4

t DA B DA B DA B DA B

1 0 0 5 0 3 0 3 0

2 3 0 5 0 0 0 3 0

3 2 0 5 0 1 0 3 0

4 3 0 5 0 0 0 3 0

5 2 0 5 0 4 0 3 0

(a) mU
∅ m

U
α

A1 A2 A3 A4

DA B DA B DA B DA B

0 0 5 0 3 0 3 0

1.01 0 5 0 1.93 0 3 0

3.93 0 5 0 0 0 3 0

0 0 0 5 0 0 0 3

5 0 5 0 3 0 3 0

(b) mU
α

A1 A2 A3 A4

t DA B DA B DA B DA B

1 0 0 5 0 3 0 3 0

2 0 0 0 5 0 0 0 3

3 4.44 0 5 0 1.56 0 3 0

4 1.13 0 5 0 1.87 0 3 0

5 4.44 0 5 0 1.56 0 3 0

(c) mSM
∅ mU

α

A1 A2 A3 A4

DA B DA B DA B DA B

0 0 5 0 3 0 3 0

0 0 0 5 0 0 0 3

4.44 0 5 0 1.56 0 3 0

1.13 0 5 0 1.87 0 3 0

4.44 0 5 0 1.56 0 3 0

(d) mSM
α

A1 A2 A3 A4

t DA B DA B DA B DA B

1 3 0 5 0 0 0 3 0

2 0 0 0 5 0 0 0 3

3 3.5 0 5 0 4 0 3 0

4 0 0 0 5 0 0 0 3

5 3.5 0 5 0 4 0 3 0

(e) mP
∅ m

U
α

A1 A2 A3 A4

DA B DA B DA B DA B

3 0 5 0 0 0 3 0

0 0 0 5 0 0 0 3

3.5 0 5 0 4 0 3 0

0 0 0 5 0 0 0 3

3.5 0 5 0 4 0 3 0

(f) mP
α

Table 7.3: Quantity of energy purchased on the day-ahead and balancing markets per stage for
all consumers depending on different models: in bold italic, we highlight purchases on the (more
expensive) balancing market and stages where no purchases are made on the day-ahead market.

With the scaled minimax approach, the model mSM
∅ yields a trade-off between efficiency and

fairness compared to mU
α : we observe that A1 and A3 decide to stop consuming at expensive

time steps, thus achieving greater savings. The model also encourages more cooperation than the
proportional model mP

∅ , as we can observe on Table 7.3. As a result, in this model, all consumers
achieve similar proportional savings, amounting to approximately 30% compared to operating
independently, at the exception of A1 that can save up to 60%. This means that any solution
where A1 shifts its consumption to other time slots to help others access the day-ahead market,
would increase its costs too much, and A3 would save less than 30%: this cannot be an optimal
solution of mSM

∅ . However, the aggregated cost of the aggregation is higher than with mU
∅ and

mU
α . Again, adding acceptability constraints does not change the solution, as the scaled minimax

problem is innately 1-acceptable (see Remark 8).

Lastly, we observe on Table 7.2 the allocation of savings with a post-allocation rule based on
Shapley’s values. This approach leverages the efficiency of mU

∅ but then re-allocates costs to
obtain a fair and acceptable solution. In this application, A1 and A3 save respectively 114%
and 111% of their costs compared to operating independently, which amounts to them being
paid by the aggregation to participate. Even though this allows A2 and A4 to gain from the
aggregation, this questions the acceptability of this solution as some would earn money while
others have residual costs. Furthermore, this method becomes impractical when dealing with
large problems involving many prosumers and time steps due to the extensive computational
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requirements. Additionally, adapting this method to dynamic and stochastic contexts is unclear,
so we do not consider it further.

7.5 Fairness across time

In most use cases, we can assume that the aggregation of agents is thought to stay in place over
long periods. One of the challenges of this long-term setting is incentivizing agents not to leave
the aggregation, which requires adjusting the acceptability constraints of the static case.

7.5.1 Problem formulation

We consider a problem with T stages corresponding to consecutive times where decisions are
made. At each stage t ∈ [T ], agent i makes a decision xit ∈ X it , incurring a cost Lit(x

i
t). Those

stage costs are aggregated through a time operator F iT : RT → R. Thus, the agent i’s problem
reads:

(P iT ) := Min
xit

F iT
(

(Lit(x
i
t))t∈[T ]

)
(7.8a)

s.t xit ∈ X it ∀t (7.8b)

xit ∈Mt ∀t. (7.8c)

A typical example of time-aggregator F iT is the discounted sum of stage costs i.e., dropping the
dependence in xi for clarity’s sake:

F iT ((Lt)t∈[T ]) =
∑
t∈[T ]

rtLt,

for r ∈ (0, 1]. Alternatively, F iT can be defined as the maximum of stage costs. This might happen
for electricity markets where a prosumer aims at peak shaving i.e., minimizing peak electricity
demand. Further, time-aggregation operators may vary among agents, who may express different
sensitivity to time i.e., the discounted rate r varies among prosumers.

We now write the aggregation problem within this framework. Note that we can cast the current
multistage setting into the setting of Section 7.3, by decomposing each agent into T independent
stage-wise sub-agents: then we have I × T and we can use the methodology of Section 7.3. Thus
we need to define an operator FI×T that takes {Lit}t∈[T ],i∈[I] as input.

However, in most settings, it is reasonable to assume that an agent is time-homogeneous, meaning
that, in some sense, for all i ∈ [N ], the agents (i, t)t∈[T ] are the same, and aggregates the
stage costs across time. Consequently, the global aggregation operator FI×T can be modeled
as aggregating, over agents, their aggregated stage-costs, i.e., FI×T = FI � FT where the �
notation stands for

FI �FT
(

(Lti)i∈[I],t∈[T ]

)
= FI

(
F1
T

(
(L1

t )t∈[T ]

)
, . . . ,FIT

(
(LIt )t∈[T ]

))
. (7.9)
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Finally, we obtain the following model for the aggregation of agents in a dynamic framework:

(AT ) := Min
xit

FI �FT
(

(Lit)i∈[I],t∈[T ]

)
(7.10a)

s.t. xit ∈ X it ∀t (7.10b)

h(x1
t , . . . , x

I
t ) ∈Mt ∀t (7.10c)

(Lit)t∈[T ] ∈ Ai, (7.10d)

where we recall that we defined FT as the sum, and suggest to choose FI from the fairness
operators (FUI ,FPI ,FPMM

I ) introduced in Section 7.3.2. Thus, we obtain a fair objective function
of the aggregated model (AT ). However, we have yet to adapt the notion of acceptability from
Section 7.3.3 to this long-term framework, which is our next topic.

7.5.2 Dynamic acceptability

In long-term problems, for the aggregation to be acceptable, agents should not be tempted
to leave the aggregation in between stages. Therefore, we extend our notion of acceptability
constraint (7.3) to a dynamic framework. First, denote vit := Lit(x

i,?
t ), the optimal independent

cost of an agent i at stage t, where xi,? is the optimal solution of Problem (7.8).

The acceptability constraint (7.3) consist in requiring, for each agent i, that its vector of costs
(Lit)t∈[T ] is less than (vit)t∈[T ]. Unfortunately, there is no natural ordering of RT , and each (partial)
order will define a different extension of the acceptability constraint (7.3). We present now some
extensions of the acceptability constraint derived from standard partial orders.

Maybe the most intuitive choice is the component-wise order (induced by the positive orthant),
i.e., comparing coordinate by coordinate. This results in the stage-wise acceptability constraint
As, which enforces that each agent benefits from the aggregation at each stage:

Ais =
{

(uit)t∈[T ] | uit ≤ vit, ∀t ∈ [T ]
}
. (7.11a)

As this approach might be too conservative for our model, i.e., constrain the aggregation too
much to take advantage of it, we consider two other orderings.

First, we can relax the stage-wise acceptability by considering that at each stage t, each agent
benefits from the aggregation if we consider its costs aggregated up to time t. This result in
progressive acceptability constraint Aip:

Aip =
{

(uit)t∈[T ] |
t∑

τ=1

uiτ ≤
t∑

τ=1

viτ , ∀t ∈ [T ]
}
. (7.11b)

Second, we ensure that each agent, aggregating its cost over the whole horizon, benefits from the
aggregation (which amounts to the set in (7.3)) if we consider only the aggregated costs at the
end of the horizon. We thus define the average acceptability constraint:

Aiav =
{

(uit)t∈[T ] |
T∑
t=1

uit ≤
T∑
t=1

vit
}
. (7.11c)

Remark 10. We have that Ais ⊆ Aip ⊆ Aiav. The acceptability constraint should be chosen as to
strike a balance between aggregated cost efficiency (obtained with a less constrained acceptability
set), and incentive to stay in the aggregation (obtained with a more constrained acceptability set).
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7.5.3 Numerical illustration
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Figure 7.2: The bars correspond to the results of different models we solve. The first one is the
independent model: we solve each (P iT ) independently. Then, there are three groups of four bars,
each group corresponds to a choice of agent operator (FU ,FPMM ,FP ). Then, given an operator,
we have the model first without then with different acceptability constraints (∅,Aav,Ap,As).
Each bar is decomposed in 4 blocks corresponding to the share of each consumer i. At the top of
each bar, we can read the sum of aggregated costs in the corresponding model.

We take the same example as in Section 7.4 and try out different combinations of operator
FI×T (FU ,FPMM ,FP ) and acceptability set A (∅,Aav,Ap,As). We denote mf

a the model with
agent operator f ∈ {U, SM,P} and acceptability set a ∈ {∅, av, p, s}. Figure 7.2 represent the
distribution of prosumers’ costs for these different cases, while Table 7.4 report their proportional
savings. Finally, on Table 7.5, we report the day-ahead and balancing purchases of the different
models with progressive and stagewise acceptability, while the results with no acceptability and
average acceptability are in Section 7.4 on Table 7.3.
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Table 7.4: Percentage of savings vi−Li(xi)
vi

achieved by Ai in the model mf
a depending on agent

operator f and acceptability set a and PoA (in percentage) of the corresponding model.

Utilitarian FUI Minimax FPMM
I Proportional FPI

A1 A2 A3 A4 PoA A1 A2 A3 A4 PoA A1 A2 A3 A4 PoA

∅ -64 46 73 46 0 30 30 67 30 0 74 21 80 21 0

Aav 48 37 0 37 4 30 30 67 30 0 74 21 79 21 0

Ap 55 23 44 23 17 44 23 57 23 8.6 45 23 56 23 4.3

As 80 14 80 14 21 80 14 80 14 12 80 14 80 14 8.0

We observe on Figure 7.2 that increasing acceptability constraints (from none to average,
progressive, and finally stage-wise) comes at a price but gives stronger guarantees to each
prosumer. Indeed, we have seen that mU

∅ is the most efficient model but yields solutions
in contradiction with individual rationality. We can correct this defect by enforcing average
acceptability, but this is not enough to ensure everyone gains from the aggregation, as A3 makes
0% of savings. With more constrained acceptability, Ap and As, we enforce individual rationality
over time or at all times. This leads to solutions where the savings among prosumers are shared
in fairer proportions- at the loss of efficiency.

On the other hand, with an agent operator reflecting fairness (like scaled minimax or proportional),
we obtain solutions that already aim at a fairer distribution of savings. Consequently, if we can
observe solutions changing with increasing acceptability constraints, those changes are clearer
with a utilitarian operator. Indeed, in the utilitarian model, A2 achieves savings ranging from
14% to 46% of his independent cost. In contrast, under the scaled minimax approach, the savings
range from 14% to 30%, and with the proportional approach, the savings fall between 14% and
21%.

Note that even though the acceptability constraints and the agent operator are two distinct tools,
they both drive the model to fairer solutions for all agents in the aggregation.
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A1 A2 A3 A4

t DA B DA B DA B DA B

1 0 0 0 5 0 0 0 3

2 0 0 0 5 0 0 0 3

3 5 0 5 0 4 0 3 0

4 1.4 0 5 0 1.6 0 3 0

5 3.6 0 5 0 2.4 0 3 0

(a) mU
Ap

A1 A2 A3 A4

DA B DA B DA B DA B

0 0 0 5 0 0 0 3

0 0 0 5 0 0 0 3

5 0 5 0 4 0 3 0

0 0 0 5 0 0 0 3

5 0 5 0 4 0 3 0

(b) mU
As

mU
Ap

A1 A2 A3 A4

t DA B DA B DA B DA B

1 0 0 0 5 0 0 0 3

2 0 0 0 5 0 0 0 3

3 5 0 5 0 4 0 3 0

4 2 0 5 0 1 0 3 0

5 3 0 5 0 3 0 3 0

(c) mSM
Ap

A1 A2 A3 A4

DA B DA B DA B DA B

0 0 0 5 0 0 0 3

0 0 0 5 0 0 0 3

5 0 5 0 4 0 3 0

0 0 0 5 0 0 0 3

5 0 5 0 4 0 3 0

(d) mSM
As

mU
Ap

A1 A2 A3 A4

t DA B DA B DA B DA B

1 0 0 0 5 0 0 0 3

2 0 0 0 5 0 0 0 3

3 3.8 0 5 0 3.5 0 3 0

4 1.9 0 5 0 1.1 0 3 0

5 4.3 0 5 0 3.5 0 3 0

(e) mP
Ap

A1 A2 A3 A4

DA B DA B DA B DA B

0 0 0 5 0 0 0 3

0 0 0 5 0 0 0 3

5 0 5 0 4 0 3 0

0 0 0 5 0 0 0 3

5 0 5 0 4 0 3 0

(f) mP
As

mU
Ap

Table 7.5: Quantity of energy purchased on the day-ahead and balancing markets per stage for
all consumers depending on different models: in bold italic, we highlight purchases on the (more
expensive) balancing market and stages where no purchases are made on the day-ahead market.

7.6 Accommodating fairness to uncertainties with stochastic
optimization

Problems with energy generation, especially from renewable sources, and prices on energy markets
are inherently uncertain as we have decisions to make over time, and the future is uncertain. Then,
in addition to acceptability and fairness, we must tackle the challenge of handling uncertainties
(while being fair about how we handle those). We want to address this issue by extending the
problem presented in Section 7.3 to a stochastic framework. To that end, we introduce random
variable ξ, along with probability space (Ω,A,P), which gathers all sources of uncertainties in
the problem. We assume that Ω is finite, a common simplification in stochastic optimization to
make problems more tractable. If Ω is not finite we rely on sample average approximation.

In the same way that we decomposed the problem in Section 7.5 with T time steps, we can
decompose the problem here with Ω scenarios. Thus, there are similarities with the previous
section. The main difference is that the set of time-step {1, . . . , T} has a natural ordering, while
the set of scenario Ω does not, which leads to discussing different partial orders on RΩ than on
RT .
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7.6.1 Static stochastic problem formulation

The problem at hand is naturally formulated as a multi-stage stochastic problem. For simplicity
reasons, we first consider a 2−stage relaxation of the problem: in the first stage, here-and-now
decisions must be made before knowing the noise’s realization; in the second stage, once the
noise’s realization is revealed, recourse actions can be decided.

We first adapt the individual model (P i) to a stochastic framework:

(P i,ρ) := min
xi(ξ)

ρ
[
Li(xi(ξ), ξ)

]
(7.12a)

s.t. xi(ξ) ∈ X i a.s. (7.12b)

xi(ξ) ∈M a.s., (7.12c)

where ρ is a (coherent) risk-measure i.e., a function which gives a deterministic cost equivalent
to a random cost, reflecting the risk of a decision for prosumer i, see e.g., [Art+99]. The choice
of ρ depends on the attitude of i towards risk. For example, the risk measure associated with a
risk-neutral approach is the mathematical expectation Eξ. Alternatively, a highly risk-averse
profile will opt for the worst-case measure supξ. Another widely used risk measure is the Average
Value at Risk (a.k.a Conditional Value at Risk, or expected shortfall, see [RU+00]), or a convex
combination of expectation and Average Value at Risk.

Now, we adapt the deterministic aggregation model (A). We face the same challenge as in
Section 7.5. With multiple scenarios, we can consider that we have I ×Ω prosumers and we need
to choose an operator FI×Ω : RI×Ω → R, leading to:

(Aρ) := Min
x

FI×Ω

(
(Li(xi(ξ), ξ))i∈[I]

)
(7.13a)

s.t. xi(ξ) ∈ X i ∀i ∈ [I] a.s. (7.13b)

h(x1(ξ), . . . ,xI(ξ)) ∈M a.s. (7.13c)

Li(xi(ξ), ξ) ∈ Ai ∀i ∈ [I] a.s.. (7.13d)

We assume the aggregator knows risk measures and prosumers objectives. As in Section 7.5.1,
there are multiple possible choices for such operators. We assume that this operator FI×Ω

results from the composition of two operators: an uncertainty-operator F iΩ dealing with the
scenarios, which can differ from one prosumer to another; and an agent operator FI , as defined
in Section 7.3.2. However, contrary to Section 7.5, it is not clear if we should aggregate first
with respect to uncertainty (meaning that a prosumer manages its own risk) or with respect to
prosumers (meaning that the risks are shared). We next discuss reasonable modeling choices of
aggregation operators and acceptability constraints.

7.6.2 Stochastic objective

For the sake of conciseness, we are going to consider two possible uncertainty aggregators: a
risk-neutral choice, where F iΩ is the mathematical expectation Eξ, and a worst-case operator
where F iΩ is the supremum over the possible realization supξ. For the agent operator FI , which

reflects the way to handle fairness, we consider either the utilitarian FUI or the scaled minimax
FPMM
I options (see Section 7.3.3 for definitions).

We suggest four different compositions of F iΩ and FI to construct the aggregation operator FI×Ω.
Again, for simplicity of notations, we write Li instead of Li(xi(ξ), ξ).
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First, we introduce the risk-neutral and utilitarian operator FUSI×Ω, which aims at minimizing the
aggregated expected costs of prosumers:

FUSI×Ω

(
(Li)i∈[I]

)
= FUI � EΩ

(
(Li)i∈[I]

)
(7.14a)

=

I∑
i=1

∑
ξ∈Ω

πξ L
i(xi(ξ), ξ). (7.14b)

Alternatively, considering a robust approach to uncertainties, we have the operator FURI×Ω which
minimizes the worst-case aggregated costs of prosumers:

FURI×Ω

(
(Li)i∈[I]

)
= sup

ξ∈Ω
�FUI

(
(Li)i∈[I]

)
(7.15a)

= sup
ξ∈Ω

{ I∑
i=1

Li(xi(ξ), ξ)

}
. (7.15b)

Remark 11. We claim that supξ∈Ω�FUI makes more sense than FUI � supξ∈Ω as the later
aggregates each prosumer’s worst costs. Indeed, if the worst-case costs for different prosumers
occur in different scenarios, the aggregated costs calculated might never happen or happen in a
scenario ξ not in Ω.

On the other hand, we have Eξ∈Ω � FUI = FUI � Eξ∈Ω, by associativity of sums. Similarly, by
associativity of supremum, we have supξ∈Ω�FPMM

I = FPMM
I � supξ∈Ω.

As the first two operators do not model fairness considerations into the model, we now look for a
fair distribution by using FPMM

I to aggregate prosumers’ costs. First, let xi,?(ξ) be the2 optimal

solution of (P i,ρ), and denote vi,ρξ := Li(xi,?(ξ), ξ), the cost incurred by i when operating alone

under uncertainty realization ξ. Finally, vi,ρ is the random variable taking values vi,ρξ for the
respective realization ξ.

Results given in Sections 7.4 and 7.5.3 suggest that the scaled minimax approach suits our
problem more than the proportional approach. Thus, in a stochastic framework, we propose the
operator FSMS

I×Ω :

FSMS
I×Ω

(
(Li)i∈[I]

)
= FPMM

I � EΩ

(
(Li)i∈[I]

)
(7.16a)

= max
i∈[I]

{ E
[
vi,E

]
−
∑

ξ∈Ω πξ L
i(xi(ξ), ξ)

E
[
vi,E

] }
. (7.16b)

Finally, combining the robust and the scaled minimax approaches, we obtain the operator FSMR
I×Ω ,

which focuses on the prosumer having the worst worst-case proportional costs:

FSMR
I×Ω

(
(Li)i∈[I]

)
= sup

ξ∈Ω
�FPMM

I

(
(Li)i∈[I]

)
(7.17a)

= sup
ξ∈Ω

{
max
i∈[I]

{ vi,Eξ − Li(xi(ξ), ξ)
vi,Eξ

} }
. (7.17b)

2We assume uniqueness of a way of selecting an optimal solution, as in Section 7.3)
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Remark 12. Note that here, depending on the sense of the combination between uncertainty-
operator and agent-operator, we could have a model with different risk-measure profiles for the
prosumers.

We now turn to extending the acceptability constraint (7.3) to a stochastic setting.

7.6.3 Stochastic dominance constraints

As in Section 7.5.2, to induce acceptability, we require that, for each prosumer i, its random cost
Li(xi(ξ), ξ) is less than the random cost of the independent model vi,E . Unfortunately, there
is no natural ordering of random variable (or equivalently of RΩ), and each (partial) order will
define a different extension of the acceptability constraint (7.3).

We now present four acceptability constraints, using various ordering on the space of random
variable, leveraging the stochastic dominance theory (see [DR03] for an introduction in the
context of stochastic optimization). In this section, we give the mathematical expression of
acceptability constraints, but mixed integer formulation can be found in Chapter D.

In a very conservative perspective, we consider the almost-sure order, comparing random variables
scenario by scenario:

Ai,ρa.s :=
{
ui,ρ | ui,ρξ ≤ vi,ρξ , ∀ξ

}
. (7.18a)

We can relax the almost-sure ordering by not requiring the benefit of aggregation for all scenarios
but distributionally. For example, if we have two scenarios ξ and ζ, with same probability, we
consider that it is acceptable to lose on ξ if we do better on ζ, that is such that ui,ρξ ≤ v

i,ρ
ξ and

ui,ρζ ≥ v
i,ρ
ζ . To formalize this approach, we turn to stochastic first-order dominance constraints

(see [DR03]), and leverage 1st order acceptability:

Ai,ρ(1) :=
{
ui,ρ | ui,ρ �(1) v

i,ρ
}

(7.18b)

:=
{
ui,ρ | P(ui,ρ > η) ≤ P(vi,ρ > η), ∀η ∈ R

}
:=

{
ui,ρ | E

[
g(ui,ρ)

]
≤ E

[
g(vi,ρ)

]
∀g : R→ R, non-decreasing

}
.

One downside of this acceptability constraint is that the modeling entails numerous binary
variables, posing practical implementation challenges.

We can thus consider a relaxed, less risk-averse version of 1st order acceptability, relying on
stochastic second-order dominance constraints, also known as increasing convex acceptability,
which is equivalent to :

Ai,ρ(ic) :=
{
ui,ρ | ui,ρ �(ic) v

i,ρ
}

(7.18c)

=
{
ui,ρ | E

[
(ui,ρ − η)+

]
≤ E

[
(vi,ρ − η)+

]
∀η ∈ R

}
=
{
ui,ρ | E

[
g(ui,ρ)

]
≤ E

[
g(vi,ρ)

]
, ∀g : R→ R, convex, non-decreasing

}
.

Moreover, increasing convex acceptability is also easier to implement than 1st order acceptability
(see Chapter D).

Finally, the risk-neutral acceptability constraint compares two random variables through their
expectation:

Ai,ρE :=
{
ui,ρ | EP [ui,ρ] ≤ EP [vi,ρ]

}
. (7.18d)

We can use another convex risk measure instead of the expectation in (7.18d).
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Remark 13. We have that Ai,ρa.s ⊆ Ai,ρ(1) ⊆ A
i,ρ
(ic) ⊆ A

i,ρ
E . Therefore, in the same way as in

Remark 10, the acceptability constraint yields a balance between risk-neutral (A,ρE ) and a robust

approach on risk (Ai,ρa.s), with intermediary visions on risk (Ai,ρ(ic), A
i,ρ
(1))

7.6.4 Numerical illustration

We consider the stochastic version of the example presented in Section 7.4, where balancing prices
{pBt }t∈[T ] are random variables with uniform, independent, distribution over [0.35pDAt , 5pDAt ].
The problem can be formulated as a multi-stage program, where day-ahead purchases are decided
in the first stage (a day-ahead of following stages), and then each stage corresponds to a time
slot where we can buy energy on the balancing market at a price pBt .

We solve and discuss the sample average approximation of the two-stage approximation of this
problem. More precisely, we draw 50 prices scenario, and solve a two-stage program where the
first stage decisions are the day-ahead purchases, and the second stage decisions are the balancing
purchases from time slot 1 to T . We set I = 4, T = 10, and we draw Ω = 50 scenarios of balancing
prices. For the prosumers’ parameters and market prices, we use the data on Tables 7.1 and 7.6.

Table 7.6: Prices on both markets

t 1 2 3 4 5 6 7 8 9 10

pDAt 3 3 7 4 2 10 7 4 7.5 8

qDA
t

12 12 12 12 12 12 12 12 12 12

Table 7.7: Percentage of expected savings
E
[
vi,sup

]
−E
[
Li(xi(ξ)

]
E
[
vi,sup

] made by Ai, expected aggregated

costs E
[
FI(L1(xi,?(ξ))i∈[I])

]
and PoA in the corresponding model.

Utilitarian Stochastic FUSI×Ω Scaled Minimax Stochastic FSMS
I×Ω

A1 A2 A3 A4 (A) PoA A1 A2 A3 A4 (A) PoA

∅ 2 52 -14 52 684 0 32 36 32 32 770 0

AE
E 4 51 1 48 684 0 32 36 32 32 770 0

AE
(ic) 22 44 25 36 721 37 32 36 32 32 770 0

AE
(1) 36 24 34 18 882 198 23 21 28 19 918 148

AE
a.s 43 17 41 14 930 246 37 17 33 16 941 171

Utilitarian Robust FURI×Ω Scaled Minimax Robust FSMR
I×Ω

A1 A2 A3 A4 (A) PoA A1 A2 A3 A4 (A) PoA

∅ -19 53 6 49 686 0 22 48 21 38 693 0

AE
E 0 51 0 48 686 0 22 48 21 38 693 0

AE
(ic) 22 43 25 33 738 52 29 43 29 33 720 27

AE
(1) 25 22 28 15 920 234 28 26 33 18 881 188

AE
a.s 43 17 40 14 930 244 43 17 40 14 930 237

We solve the problem with different combinations of aggregation operators and acceptability sets
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and can compare the impact of each combination on the solution. We denote mf
a the model with

aggregation operator f ∈ {US, SMS,UR, SMR} and acceptability set a ∈ {∅,E, (ic), (1), (a.s)}.
We read prosumers’ expected percentage of savings with risk-neutral and worst-case approaches
on Table 7.7. For example, in model mUS

(ic), we read that A1 (resp. A2, A3, A4) saves 22%

(resp. 44%, 25%, 36%) of its costs. The expected cost of the aggregation is 721$, thus asking for
increasing-convex acceptability costs 37$. Moreover, we can observe the distribution of prosumers’
expected costs with a risk-neutral (resp. worst-case) approach on Figure 7.3 (resp. Figure 7.4).

Our first comment is that the problems previously identified from a utilitarian perspective with
no acceptability constraints are still present in a stochastic framework. Indeed, both with the
risk-neutral utilitarian FUSI×Ω and worst-case utilitarian FURI×Ω operators, we observe on Table 7.7
that some prosumers can pay more in the aggregation compared to being alone (A3 pays +14%
in the stochastic approach, and A1 pays +19% in the robust approach). This highlights the
necessity for either acceptability constraints or an aggregation operator.

If we choose a fair approach through the objective (operators FSMS
I×Ω and FSMR

I×Ω ), we guarantee
a higher percentage of savings to all prosumers than in the utilitarian approach. For example,
with no acceptability constraints, all prosumers save at least 32% of their costs in a risk-neutral
approach and 21% in a robust approach, compared to respectively −14% and −19% with the
utilitarian approach. This comes at the price of efficiency, especially in the risk-neutral case,
as the expected aggregated costs of the scaled minimax approach is 13% higher than with the
utilitarian approach. This remains true as we use smaller acceptability set.

Conversely, when solving this problem with a utilitarian approach (operators FUSI×Ω and FURI×Ω),
we can increase the guaranteed percentage of savings by constraining more the acceptability.
Indeed, with FUSI×Ω, all prosumers save at least from 1% with expected acceptability to 22% with
increasing convex acceptability, and with FURI×Ω, it is from 0% to 22%. However, increasing the
acceptability to first-order or almost sure does not improve this guarantee, as the problem is now
getting too constrained. For example, with almost-sure acceptability, the choice of the operator
on uncertainty is inconsequential: the distribution of costs is the same with both operators FUSI×Ω

and FURI×Ω. Notably, there exists a substantial gap between increasing-convex acceptability and
first-order acceptability. For example, with the scaled minimax stochastic operator FSMS

I×Ω , the
costs increase from 770 with increasing convex acceptability to 918 with first-order acceptability.

Thus, we obtain various solutions with different balances between efficiency and fairness and
different risk visions. In this example, in the stochastic case, if we want to give the same
guarantees to every prosumer, the natural choice is operator FSMS

I×Ω . However, this approach

costs 13% more than in m
FUSI×Ω

∅ . If we want to opt for a less costly approach, the operator FUSI×Ω

combined with increasing convex acceptability might be considered a better trade-off between
efficiency and fairness: it ensures at least 22% of savings to each prosumer and induces 5% of
efficiency loss. Finally, increasing the variability of the scenarios drawn for these tests does not
significantly impact the empirical conclusions we make in this section.

7.7 Conclusion

In this paper, we have provided a framework with tools to accommodate fairness in prosumer
aggregation problems. Through the discussion in Section 2, we emphasized the importance of
fairness and the need to carefully consider how to model it and be aware of the different approaches
available. Since modeling fairness aims to improve the social acceptability of mathematical
models, we connected underlying philosophical concepts to the fairness modeling process.
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Figure 7.3: The bars correspond to the results of different models we solve with a stochastic
approach. The first one is the model without aggregation
: we solve each (P i,E) independently. The second bar corresponds to the problem solved with
operator FUSI×Ω without acceptability constraints. Then, the four following bars correspond to the
same problem with increasingly strong acceptability (AE

E,AE
(ic),A

E
(1),A

E
a.s). The following bar is

for the problem solved with operator FSMS
I×Ω without acceptability constraints, followed by four

bars with different acceptability sets. Each bar is decomposed in 4 blocks corresponding to the
expected share E[Li(xi(ξ), ξ)] of each consumer i. At the top of each bar, we can read the sum
of expected aggregated costs in the corresponding model.

First, we discussed acceptability constraints to discourage prosumers from leaving the aggregation.
We then compared different choices of the objective function (utilitarian, scaled minimax, and
proportional). Through a stylized (and more straightforward to interpret) deterministic case
study, we showed how different combinations of objectives and constraints influence solutions,
emphasizing the importance of fairness and acceptability considerations. We then extended the
model to dynamic and stochastic frameworks, aligning it with what we expect practical problems
to be. In this context, we adapt acceptability constraints to account for long-term horizons and
uncertainties, and we showcase their impact on solutions using similar stylized instances.

In our numerical example, we obtained a spectrum of options from various combinations of
acceptability sets and objective functions, ranging from the most efficient models (with the lowest
aggregated costs) to the fairest models (where agents’ gains are more comparable). Too-restrictive
acceptability sets or a bargaining approach (proportional operator FPI ) can significantly reduce
efficiency, while an intermediate approach leverages aggregation benefits without excessively
favoring certain prosumers. Thus, we recommend the proportional min-max agent aggregator
with progressive acceptability constraint in the dynamic case (resp. increasing convex acceptability
in the stochastic case), which balances efficiency and fairness well. Recall that the framework
discussed here is not reduced to prosumer aggregation in energy markets only, and can be adapted
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Figure 7.4: This figure can be read like Figure 7.3, except that the two considered operators are
FURI×Ω and FSMR

I×Ω .

to other aggregation problems in energy system management problems (e.g., virtual power plant,
portfolio management in energy markets, ancillary service provision, etc.).

In future work, we plan to discuss the extension of the aggregation problem to a multistage
stochastic program, where we would have to combine the partial orders presented in the dynamic
framework in Section 7.5 and the stochastic orders of the stochastic framework in Section 7.6.
This will require a discussion of possible aggregators FT×Ω×I over agent, time, and uncertainty
simultaneously. Although we can easily assume a factorization of the form FI �FT×Ω, it would
not be realistic to describe FT×Ω as the composition of a time aggregator and an uncertainty
aggregator. Indeed, such a factorization would not guarantee time-consistency of the problem and
might not even preserve non-anticipativity. Further, acceptability constraints must be defined
using multivariate stochastic order (see [DR09; AL15; DW16]) whose mathematical programming
representations are more involved. Finally, it would be interesting to investigate potential bounds
on price of acceptability.
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Appendix C

Computing Shapley’s values

In this appendix, we give more details on how to compute Shapley’s values for the application
in Section 7.4. First, we introduce the general formulas and definitions required to compute
Shapley’s values, then we apply them to our example.

C.1 Definitions and Formulas

Shapley’s values are commonly seen as a fair distribution of costs (or revenues) when agents
cooperate in a cooperative game. The Shapley Value returns each player’s fair share of the total
gains by averaging their contributions across all possible ways they can join the coalition. Let N
be the number of agents in the game. We denote w : 2|N | → R, the worth function associating to
a coalition S, the expected payoff obtained by cooperation.

To compute Shapley’s values, first, we compute δi(S), the marginal contribution of agent i to
coalition S ⊂ N :

δi(S) = w(S ∪ {i})− w(S) (C.1a)

Then, the Shapley value of agent i, given a characteristic function w, is φi(w):

φi(w) =
1

n

∑
S⊂N\{i}

(
n− 1

|S|

)−1

δi(S) (C.1b)

C.2 Application to our example

We consider an example with 4 agents. For each coalition S ⊂ [4], we solve the aggregated
problem with utilitarian operator FUS and acceptability constraints A1-as in cooperation games
we must satisfy individual rationality properties- and obtain optimal solution cS Then, we
introduce the characteristic function assessing the worth of coalition S as:

w(S) =
∑
i∈S

vi − cS , (C.2a)

where vi is the optimal value of problem (P i). Thus w(S) designates the savings made by coalition
S when they cooperate. On Tables C.1 and C.2, we detail the intermediate computations, and in
Equations (C.2b) to (C.2e) we compute shapley’s values.
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{1} {2} {3} {4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4}∑
i∈S
vi 50 280 40 168 330 90 218 320 448 208 370 498 258 488 538

cS 50 280 40 168 330 90 218 320 448 208 244 365 162 392 333

w(S) 0 0 0 0 0 0 0 0 0 0 126 133 96 96 205

Table C.1: Costs with and without cooperation and worth w of each coalition S.

{1} {2} {3} {4} {1,2} {1,3} {1,4} {2,3} {2,4} {3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4}
δ1(S) - 0 0 0 - - - 126 133 96 - - - 109

δ2(S) 0 - 0 0 - 126 133 - - 96 - - 109 -

δ3(S) 0 0 - 0 126 - 96 - 96 - - 72 - -

δ4(S) 0 0 0 - 133 96 - 96 - - 79 - - -

Table C.2: Marginal contributions of agent i to each coalition.

φ1(w) =
1

4

[(
3

1

)−1 (
δ1({2}) + δ1({3}) + δ1({4})

)
+

(
3

2

)−1 (
δ1({2, 3}) + δ1({2, 4}) + δ1({3, 4})

)
+

(
3

3

)−1

δ1({2, 3, 4})
]

φ1(w) =
1

4

[
1

3
× 0 +

1

3
(126 + 133 + 96) + 1× 109

]
= 56.8 (C.2b)

φ2(w) =
1

4

[
1

3
× 0 +

1

3
(126 + 133 + 96) + 1× 109

]
= 56.8 (C.2c)

φ3(w) =
1

4

[
1

3
× 0 +

1

3
(126 + 96 + 96) + 1× 72

]
= 44.5 (C.2d)

φ4(w) =
1

4

[
1

3
× 0 +

1

3
(133 + 96 + 96) + 1× 79

]
= 46.8 (C.2e)

As the values computed here represent the way to distribute savings, we must subtract φi(w) from
the cost of agent i to obtain its costs in the aggregation after fair allocation through Shapley’s
values in Table C.3.
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A1 A2 A3 A4

φi(w) 56.8 56.8 44.5 46.8

vi 50 280 40 168

Li(xi) -6.8 223.2 -4.5 121.2

100v
i−Li(xi)
vi

114 20 111 28

Table C.3: Costs and proportional savings of the agents with Shapley’s post-allocation scheme.
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Appendix D

Modeling of stochastic dominance
constraints

We present here practical formulas to implement the stochastic orders dominance constraints
introduced in Section 7.6.3. Those constraints establish a dominance between vi,ρ, the random
variable representing i independent costs, and ui,ρ, the random variable representing i costs in
the aggregation.

D.1 First-order dominance constraint model

The first-order dominance constraints (7.18b) model is based on [GNS08].

Lemma 1. In Problem (Aρ), acceptability constraints ui,ρ �(1) v
i,ρ can be modeled with:

biξ,η ∈ {0, 1} ∀η ∈ [Ω], ∀ξ ∈ Ω (D.1a)

ui,ρξ − v
i,ρ
η ≤M biξ,η ∀η ∈ [Ω], ∀ξ ∈ Ω (D.1b)

Ω∑
ξ=1

πξb
i
ξ,η ≤ aη ∀η ∈ [Ω]. (D.1c)

We denote aη := P(vi,ρ > vi,ρη ), which is a parameter for the aggregation problem.

Proof. As Ω is assumed to be finite, vi,ρ follows discrete distribution with realizations vi,ρη for
η ∈ Ω. Then,

ui,ρ �(1) v
i,ρ ⇐⇒ P(ui,ρ > η) ≤ P(vi,ρ > η) ∀η ∈ R
⇐⇒ P(ui,ρ > vi,ρη ) ≤ P(vi,ρ > vi,ρη ) ∀η ∈ Ω.

Then, using P(X > x) = E[1X>x], and introducing binary variables biξ,η = 1
ui,ρξ >vi,ρη

, we get:(
P(ui,ρ > vi,ρη ) ≤ P(vi,ρ > vi,ρη ) ⇐⇒

Ω∑
ξ=1

πξb
i
ξ,η ≤ aη

)
∀η ∈ Ω.

To linearize the definition of biξ,η, we rely on big-M constraint:

biξ,η ∈ {0, 1} ∀η ∈ Ω,∀ξ ∈ Ω

ui,ρξ − v
i,ρ
η ≤Mbiξ,η ∀η ∈ Ω, ∀ξ ∈ Ω.
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D.2 Increasing convex dominance constraint model

The increasing convex dominance constraints (7.18c), is based on [CGS09].

Lemma 2. In problem (Aρ), the acceptability constraint ui,ρ �(ic) v
i,ρ can be modeled with:

siξ,η ≥ 0 ∀η ∈ [Ω], ∀ξ ∈ Ω (D.2a)

siξ,η ≥ u
i,ρ
ξ − v

i,ρ
η ∀η ∈ [Ω], ∀ξ ∈ Ω (D.2b)

Ω∑
ξ=1

πξs
i
ξ,η ≤ aicη ∀η ∈ [Ω]. (D.2c)

We denote aicη := E[(vi,ρ − vi,ρη )+].

Proof. As in Section D.1, we know that vi,ρ follows a discrete distribution with realizations vi,ρη )
for η ∈ Ω. Then,

ui,ρ �(ic) v
i,ρ ⇐⇒ E

[
(ui,ρ − η)+

]
≤ E

[
(vi,ρ − η)+

]
∀η ∈ R

⇐⇒ E
[

(ui,ρ − vi,ρη )+
]
≤ E

[
(vi,ρ − vi,ρη )+

]
∀η ∈ Ω.

We introduce positive variables siξ,η = (ui,ρξ −v
i,ρ
η )+, for η ∈ Ω. Thus, we can model the increasing

convex dominance constraints as: follows(
E
[

(ui,ρ − vi,ρη )+
]
≤ E

[
(vi,ρ − vi,ρη )+

]
⇐⇒

Ω∑
ξ=1

πξs
i
ξ,η ≤ aicη

)
∀η ∈ [Ω].



Appendix E

Additional numerical results

E.1 Impact of α

We test the model with different values of α that represent the targeted gap between a prosumer’s
cost in the aggregation and its individual optimal cost. Figure E.1 presents the proportional
savings of prosumers when solving mf

α for f ∈ {U, SM,P} and α ∈ {0.6, 0.7, 0.8, 0.9, 1.0}. Bear
in mind that solving mSM

∅ is equivalent to maximizing α (see Remark 8). Hence, if α? is the
optimal solution of Problem (7.5), enforcing acceptability constraints with α ≥ α? results in the
same solution, while solving mSM

α with α < α? leads to the disagreement point. In our study
case, α? = 0.6964285.

Figure E.1: Proportional savings vi−Li(xi)
vi

of prosumers depending on the chosen fairness operator
and the acceptability coefficient α. In red above the figure is the cost of the aggregation in the
corresponding model.

In the utilitarian case (f = U), increasing α relaxes the model, leading to a reduction in
aggregation costs between mU

0.7 and mU
0.8. In some cases, while the aggregation cost remains

unchanged, varying α affects the cost allocation of prosumers. For example, with α = 0.8, A1

and A3 save respectively 32% and 20%, whereas with α = 0.9 they save 34% and 17.5%. Finally,
with the proportional operator, we observe a switch in the aggregation cost between mP

0.7 and
mP

0.8 leading to a change in cost allocation. Unlike the utilitarian operator, cost distribution
among prosumers remains unchanged for the same aggregation cost. Here, enforcing stronger
acceptability results in more evenly distributed proportional savings. Specifically, for α ≥ 0.8,
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savings range from 21.4% to 80%, whereas with α < 0.8, they range from 30.5% to 52.5%.

Figure E.2: Proportional savings vi−Li(xi)
vi

of prosumers in the model mU
α depending on α. Above

the figure, the aggregation cost for each model is shown in red, with ’−’ indicating no change.

We test the utilitarian model mU
α with a finer discretization of α. As shown in Figure E.2, for α

between 0.74 and 0.83, the aggregation cost remains unchanged, while cost distribution shifts
between A1 and A3. In this case, A1 and A3 have flexible energy consumption, allowing the
aggregation to rely on either for day-ahead market access. A shift in cost distribution between
them indicates a change in which consumer is prioritized.

E.2 Increasing the gap between day-ahead and balancing prices

We conduct tests on various instances to verify that our observations are not solely problem-
dependent. Specifically, we consider cases with different gaps between day-ahead and balancing
prices

As a reference, we use the balancing prices in Table E.1. We then evaluate the models with
day-ahead prices set as pDAt = γpBt , where γ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}. A lower γ increases the
benefit of aggregation. The parameters for the minimum and maximum energy consumption
of prosumers are given in Table 7.1. Since we set T = 10, the total demand is adjusted to
Q = [20, 50, 16, 27].

Table E.1: Balancing prices per stage

t 1 2 3 4 5 6 7 8 9 10

pBt 34 35 30 33 24 25 38 35 39 25

To compare the different instances, we consider three indicators. First, the minimal propor-
tional savings:

α? := min
i∈[I]

{vi − Li(xi)
vi

}
,
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representing the smallest proportional savings received by any agent. Then, the dispersion of
proportional savings, denoted δ:

δ := max
i∈[I]

{vi − Li(xi)
vi

}
− α?,

that measures the difference between the highest and lowest proportional savings. Finally, global
aggregation gains:

v+ :=
∑
i∈[I]

vi − v(mf
α),

quantifying the overall benefit of aggregation.

Figure E.3 presents the different indicators for γ ∈ {0.5, 0.6, 0.7, 0.8, 0.9} across models mf
1 with

f ∈ {U, SM,P} and α = 1. Several general observations hold across the five instances.

First, as expected, the minimax operator consistently yields the highest minimal proportional
savings α?, regardless of the acceptability level. It also minimizes the dispersion of proportional
savings δ. Second, for a given acceptability set, the utilitarian operator achieves the highest
overall gains. As γ decreases, the gap between day-ahead and balancing prices widens, making
access to the day-ahead market more advantageous. Consequently, aggregation becomes more
beneficial for each agent, leading to higher global gains and α?. However, as γ increases from
0.5 to 0.8, the dispersion of proportional savings grows under the utilitarian operator, while it
decreases under the proportional one.

Figure E.3: Minimal proportional saving α?, dispersion of proportional savings δ and global
aggregation gains v+ obtained by solving mf

1 for f ∈ {U, SM,P} for instances depending on the
gap γ between day-ahead and balancing prices.

E.2.1 Testing the stochastic case on different scenario samples

We present additional tests for different instances of the problem described in Section 7.6.4. We
consider instances where balancing prices {pBt } are random variables with uniform, independent
distribution over [0.3pDAt , 3pDAt ]. From this distribution, we randomly generate 20 samples of
50 scenarios. Prosumers’ parameters and day-ahead market prices are taken from Tables 7.1
and 7.6.

For each scenario sample, we solve mf
a with f ∈ {US, SMS} and a ∈ {∅,E, (ic), (1), (a.s)}. As in

Chapter B, we report the minimum proportional savings α?, dispersion of proportional savings δ
and global aggregation gains v+ for each model. For each indicator, we compute the expectation,
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standard deviation, minimum, and maximum values across the 20 instances and summarize the
results in Tables E.2 and E.3.

α? δ v+

average std min max average std min max average std min max

mUS
∅ -39.8 16 -75 -9.5 69 18.8 30.8 108.5 148.1 12.9 123.7 172.7

mUS
E 0 0 0 0 27 2.9 21.4 31.4 147.7 13.1 123.7 171.1

mUS
(ic) 0 0 0 0 27 2.9 21.4 31.4 147.7 13.1 123.7 171.1

mUS
(1) 6.8 3.4 0 11.6 10.8 5.3 0 17 80.5 41.5 0 135.7

mUS
(a.s) 0.7 2.2 0 8.3 1.5 4.5 0 15.3 8.4 26.3 0 97.4

Table E.2: Average value, standard deviation, minimum and maximum values of the minimal
proportional saving α?, the dispersion of proportional savings δ and global aggregation gains v+

obtained by solving the models with the risk-neutral utilitarian operator FUSI×Ω over 20 different
samplings of scenarios.

α? δ v+

average std min max average std min max average std min max

mSMS
∅ 16.8 1.2 13.8 18.7 0.6 0.9 0 4.2 134.7 13 107.2 159.6

mSMS
E 16.8 1.2 13.8 18.7 0.6 0.9 0 4.2 134.7 13 107.2 159.6

mSMS
(ic) 16.8 1.2 13.8 18.7 0.6 0.9 0 4.2 134.7 13 107.2 159.6

mSMS
(1) 7.2 4.3 0 13.6 8.2 5.4 0 14 72.6 41.5 0 119.2

mSMS
(a.s) 0.7 2.2 0 8.3 1.4 4.5 0 15.1 8.4 26.3 0 97.3

Table E.3: Average value, standard deviation, minimum and maximum values of the minimal
proportional saving α?, the dispersion of proportional savings δ and global aggregation gains v+

obtained by solving the models with the risk-neutral scaled-minimax operator FSMS
I×Ω over 20

different samplings of scenarios.

From these tables, we observe that although the values fluctuate between different samples,
the comparison between models remains consistent. Notably, under the risk-neutral scaled-
minimax operator FSMS

I×Ω , α? and δ almost do not fluctuate. Moreover, when comparing the
utilitarian approach ( FUSI×Ω) with the minimax approach ( FSMS

I×Ω ), the latter consistently yields
the highest α? and minimal δ. Finally, increasing the level of acceptability reduces the dispersion
of proportional savings but also leads to a decrease in global gains.



Conclusion and perspectives

Starting from a client study case of METRON, we modeled a joint production and energy
planning problem as a Multistage Stochastic mixed-binary Linear Program (MSbLP) in Chapter 3.
MSbLP are known for their complexity and the main focus of this thesis has been to elaborate
efficient algorithms to solve them. We analyzed existing methods like MPC and SDP and
introduced a heuristic leveraging cost-to-go approximations computed with SDDP. This served
as the foundation for Part II, where we explored partial relaxations of integrality constraints to
incorporate SDDP. In Chapter 4, we proposed an abstract framework combining SDDP with
Branch-and-Bound (BB) techniques to solve MSbLP. This led to an exact algorithm in Chapter 5
that iteratively solves partial relaxations of an MSbLP that rely on subtrees structure.

Let us now discuss potential future research directions.

Smart and efficient growing strategies Our partial relaxation approach enforces integrality
on a subtree while relaxing it elsewhere, approximating these regions with SDDP. We proposed
various strategies to grow subtrees and construct policies with reasonable average costs. Numerical
results demonstrated the potential of this approach, particularly for problems where deterministic
approximations are overly optimistic and full integrality relaxation yields infeasible solutions.
However, the random strategy outperformed the more theoretically sophisticated Integrality
Gap (IG) strategy in both solution quality and computational time. Future work will focus
on developing smarter growing strategies that outperform random approaches while ensuring
convergence.

Partially relaxing information constraints In solving an MSbLP, the challenge is to
account both for uncertainties and integrality constraints. In Part II, we prioritized uncertainty
by relaxing integrality constraints. Alternatively, we propose, in future work, to prioritize
integrality by relaxing information constraints instead. We can actually keep the structure of
Algorithm 12, where partial relaxation rely on the structure of subtrees. This means enforcing all
constraints on a subtree while approximating the remaining horizon as a deterministic problem.
This approach results in a partial relaxation of information constraints, and the same iterative
process from Algorithm 12 can be applied. Comparing the results of Algorithm 12 with those
of this alternative procedure would provide insights into the relative importance of modeling
uncertainty and integrality for a given problem.

Fairness in a multistage stochastic framework In Part III, we addressed fairness in
aggregation problems by introducing acceptability constraints, ensuring all agents benefit from
collaboration. These constraints enforce an order between aggregated and independent costs.
While the static deterministic case relies on a total order on real numbers, the dynamic and
stochastic cases require partial orders in higher dimensions. We proposed several partial orders
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for multistage and stochastic settings. An interesting direction for future work is to identify
partial orders that simultaneously suit both multistage and stochastic contexts.
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[FR22] Christian Füllner and Steffen Rebennack. “Non-Convex Nested Benders Decompo-
sition”. In: Mathematical Programming 196.1-2 (2022), pp. 987–1024. (Visited on
08/11/2023).
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