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DESIGN PROBLEM

Design Problem Formulation

(P) : min
θ∈Θ

I (θ) + V (x0; θ)

• Design variables: θ := {vDA
t }t∈[T ]

• Design constraints: Θ :=
{
vDA
t ≥ 0, ∀t ∈ [T ]

}

• Design cost: I (θ) =
∑T

t=1 p
DA
t vDA

t ;

• Parametrized problem cost: V (x0, θ) := v(Pθ);
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OPERATIONAL PROBLEM

Stochastic parametrized operational problem

(Pθ) min
(ut ,xt)t∈[T ]

E
[ T∑

t=1

Lθt (xt−1,ut ,qPV
t )

]

s.c xt = Dθt (xt−1,ut ,qPV
t ) xt ∈ X θ

t ∀t ∈ [T ]

ut ∈ Uθt (xt−1,qPV
t ) ⊂ Uθt ∀t ∈ [T ]

σ(ut) ⊂ σ(qPV
1 , ....,qPV

t ) ∀t ∈ [T ]

• State variables: xt := (SOCt , s
1
t , s

2
t , s

3
t ),

• Controls: ut := (qgrid
t , v ID

t , φ+
t , φ

−
t , (u

ij
t )i∈I ,j∈J︸ ︷︷ ︸

∈R+

, (bijt )i∈I ,j∈J︸ ︷︷ ︸
∈{0,1}

),

• Random variables : qPV
t assumed independent.
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1 , ....,qPV
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• Dynamic equations:

Dθt (xt−1,ut ,qPV
t ) =

{
s jt = s jt−1 − d j

t +
∑

i u
ij
t ∀j

SOCt = SOCt−1 − ρφ−t + ρφ+
t

• Initial conditions : s0 = 0 SOC0 = SOCmin
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bij
t ∈ {0, 1} ∀i ∈ I , j ∈ J

uijminb
ij
t ≤ uijt ≤ uijmaxb

ij
t ∀i ∈ I , j ∈ J

qgrid
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• Controls constraints:

Uθt (xt−1,qPV
t ) =
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. . .∑
j

bijt ≤ 1 1 product per mill

max
i

biat + max
i

bict ≤ 1 Shared resources

qload
t ≤ qgrid

t + qPV
t + φ−t − φ+

t Load balance
qgrid
t = vDA

t + v ID
t Energy purchases
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1 , ....,qPV
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• Objective: we minimize the expected cost over [1, . . . ,T ];
• Instantaneous cost: Lθt (xt−1,ut ,qPV

t ) := pID
t v ID

t ;
• Non-anticipativity constraints: we don’t know what happens

in the future (after t).
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THE (CORRECTED) EV STRATEGY

• Solve the Expected Value problem (EV),

• Fix the production plan: (uijt )t∈[T ], (b
ij
t )t∈[T ],

• Adapt energy variable to uncertainties: v ID
t , φ+

t , φ
−
t .

Actual solar en-
ergy available qPV

t

Is there more en-
ergy than needed?

Charge as much
energy as possible

yes

Stick to the
deterministic
battery plan.

no

Fix qgrid
t to match

energy needed.

Figure: Deterministic procedure to adapt variables to uncertainties.
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MODEL PREDICTIVE CONTROL

Algorithm 1: Model predictive control
1 Input: x0, q̂PV solar prediction for the whole horizon

2 for t : 1,...,T do

3 Observe qPV
t realization of solar energy t.

(u]
t′)t′≥t = argmin

ut ,(ut′ )t′>t

Lt(xt−1, ut , qPV
t ) +

T∑
t′=t+1

Lt(xt′−1, ut′ , q̂
PV
t′ )

xt′ = Dt(xt′−1, ut′) ∈ Xt′

ut′ ∈ Ut′(xt′ , q̂
PV
t′ )

xt = Dt(xt−1, u]
t )
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DYNAMIC PROGRAMMING

. . . . . .

{Vt}t∈[T ]

Operational problem (Pθ)

Large multistage
stochastic mixed-
integer problem

Decomposition
in subproblems

Approximation & Interpolations

Relaxed problem (P r
θ)

Large multistage stochas-
tic continuous problem

Relaxed problem (P r
θ)

Relaxing integrity

Approximation V r
t

Stochastic Dual
Dynamic Programming

Can we use these approximations
to compute a feasible solution?

u?t := arg min
ut∈Ut(xt−1,ξt)

Lθt (x , ut , ξ) + V r
t+1(y)

xt := Dθt (xt−1, u
?
t , ξt)
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LOOK-AHEAD STRATEGY

. . . . . .

{Vt}t∈[T ]

Operational problem (Pθ)

Dynamic Programming
Reduces a T−stage problem to
T consecutive 1−stage problems.

. . . . . .

{V LA
t }t∈[T ]

Look-ahead Dynamic Programming
Reduces (Pθ) to T + 1 consecutive

2−stage problems.

Non-anticipativity constraints must hold:
we consider all realizations and corresponding variables at t + 1(×|Ωt |)

Objective: minimize the sum of instantaneous cost at t,
expected cost over scenarios at t + 1 and expected cost-to-go from t + 2.
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SOLVING THE DESIGN PROBLEM

(P) : min
θ∈Θ

I (θ) + V (x0; θ)

Operational problem
Corrected EV
MPC
Look-ahead heuristic

Design problem
Find the optimal θ

θ?
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(P) : min
θ∈Θ

I (θ) + V (x0; θ)

Operational problem
Corrected EV
MPC
Look-ahead heuristic

Design problem
Find the optimal θ

θ?

How to determine the optimal θ?
1. Expected Value strategy: solves a deterministic version of the

whole problem to determine θ;
2. 2−stage strategy: takes decision θ minimizing the expected

cost over SMC scenarios;
3. Stochastic Dual Dynamic Programming: solves the continuous

relaxation of the problem.
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2−STAGE STRATEGY

Determining θ

First Stage

Solving (Pθ)

Second Stage

Contain uncertainties

(Pθ) is a Multistage Problem.

1

ξ1

2

ξ2

3

ξ3

. . .

t

ξt

Here we consider it as a
1−stage problem.

All uncertainties are re-
vealed simultaneously

min
θ∈Θ

E [V ant(x0, ξ[1:T ]; θ)]

Must be chosen without
knowing the uncertainties at stage 2

min
θ∈Θ

I (θ) + E[V ant(x0, ξ[1:T ]; θ)]

min
θ∈Θ

min
(xst ,u

s
t )s,t

I (θ) +
∑S

s=1
1
SV

ant(x0, ξ
s
[1:T ]; θ)

SAA
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TESTING FROM DATA

• Prices given by the Korea Electricity Power Corporation
(KEPCO) website;
• Data collection for solar generation on NEDO website;
• Various renewable size, a factor F ∈ {0.5, 1, 2, 3};
• Various battery sizing: SOCmax represents 0.5, 3 or 6 hours of

maximum renewable production;
• Final demand d j

T > 0.
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TESTING FROM DATA

Anticipative Regret (AR)
For a strategy ψ, and a scenario ξ[T ],

ARψ(ξ[T ]) =
V̂ ψ(x0, ξ[T ]; θ)− V̂ ψant (x0, ξ[T ]; θ)

|V̂ ψant (x0, ξ[T ]; θ)|

12 / 15



OPERATIONAL PROBLEM RESULTS

SOCmax 0.5h 3h 6h
Solar factor L-A MPC EV L-A MPC EV L-A MPC EV

0.5 4.9 0.5 1.0 6.1 0.5 2.4 5.4 0.5 3.2
1.0 6.1 1.3 4.6 3.9 0.9 6.3 2.4 0.6 6.4
2.0 8.7 3.9 14 4.5 1.5 15 4.0 1.4 15
3.0 11 5.6 27 9.1 3.6 28 8.2 3.5 28

Table: Anticipative Regret (AR) in % for different methods (EV strategy,
MPC, Look-ahead) for the operational problem: MPC yields the most
satisfactory results.
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DESIGN PROBLEM RESULTS

OPT AR (in %)
Solar Factor MPC 2stage SDDP MPC 2stage SDDP
0.5 6067 6023 6038 1.6 0.9 1.1
1.0 5471 5483 5451 2.1 2.3 1.7
2.0 4552 4553 4481 4.2 4.2 2.5
3.0 3714 3691 3641 8.7 7.9 6.7

Table: Expected Cost (Opt) and Anticipative Regret (AR) for different
methods (EV, 2−stage, SDDP) determining θ and then MPC.

14 / 15



IN A NUTSHELL

• We decompose an industrial energy-aware problem into an
operational problem embedded in a design problem.

• We confront methods relaxing either integrity or information
constraints.
• For these kinds of problems:

I Considering uncertainties is relevant;
I If uncertainties impact future costs, a stochastic method yields

better results.

Future works
• Find a satisfactory stochastic heuristic dealing with binary

variables;
• Incorporate energy market vision.
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