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MATHEMATICAL MODEL
We consider a multistage stochastic problem:

(P) min
x,u,b

E

[
T∑
t=1

Lt(xt−1,ut, bt, ξt)

]
xt+1 = Ft+1(xt,ut, bt, ξt) ∀t
ut ∈ U(xt, ξt) ⊂ Rnu ∀t
bt ∈ B(xt, ξt) ⊂ {0, 1}nb ∀t
σ(ut, bt) ⊂ σ(ξ1, . . . , ξt) ∀t

Let (ξt)t∈[T ] be a sequence of finitely supported random
variables. We define a scenario (ξjtt )t∈[T ] as a realization
of (ξt)t∈[T ], and the scenario tree T as the collection of all
scenarios.

We denote Nt the set of nodes in T of depth t. Then a
node ν ∈ Nt reads its ancestor information from the root:

ν = (a(ν), ξktt ) = ((. . . ((∅, ξk11 )︸ ︷︷ ︸
∈N1

, ξk22 ), . . . , ξ
kt−1

t−1 ), ξktt )

We can reformulate the problem in its extensive form:

(Pext) min
xν ,uν ,bν

T∑
t=1

∑
ν∈Nt

πνLt(xν , uν , bν , ξν)

xν = Fν(xa(ν), ua(ν), ba(ν), ξa(ν)) ∀ν

uν ∈ U(xν , ξν) ∀ν
bν ∈ B(xν , ξν) ⊂ {0, 1}nb ∀ν

MOTIVATIONS: STUDY CASE
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• Problem We must provide the factory with a pro-
duction and energy supply plan minimizing energy
costs over a time horizon (T = 24). Energy is bought
in real time or in advance.

• Variables
Continuous: production, stocks, energy bought, ESS
charge/discharge and stocks;
Binary: bijt = 1{j produced by i at t}

• Constraints
Dynamic Equations for stock variables;
Shared resources: hard constraints (binary).
Demand: for each product.

DYNAMIC PROGRAMMING
• Under stage-wise independence of the noises, we re-

formulate the problem with dynamic equations.

• Because the state variables are continuous, classic dy-
namic programming is limited by the curse of dimen-
sionality and is not a reasonable option here.

• If the problem was continuous, SDDP would solve it
easily. Unfortunately we have binary variables, mod-
eling hard constraints.

STATE OF THE ART

• Model Predictive Control

Principle: solve deterministic sub-problems, adjusting trajectory
as random realizations are revealed.
Pros:use of deterministic solvers, no stagewise independence.
Cons: no solution quality guarantee, slow online running time.

• Stochastic Dynamic Programming

Principle: with stagewise independence, we solve the problem
with dynamic equations.
Pros: few assumptions, easily implemented
Cons: curse of dimensionality.

• Stochastic Dual Dynamic Programming

Principle: solves continuous multistage linear stochastic prob-
lems by constructing Benders-like cuts.
Pros: fast in practice, and theoretical guarantee.
Cons: cannot handle integer variables.

• Stochastic Dual Dynamic integer Programming

Principle: algorithm built on SDDP to solve multistage linear
stochastic problems with only binary state variables.
Pros: Theoretical guarantees.
Cons: Slow iterations and convergence.

BRANCH-AND-BOUND
• The extensive MILP (Pext) is intractable and cannot be

solved with classical solvers.

• We would like to reduce the problem to multiple
continuous sub-problem by resorting to branch-and-
bound methods.

• However, even the relaxed problem are too big to be
solved by LP solver (O(1024) variables).

å Can we use SDDP to solve them?

å We introduce assignation function:

b : T →
{
{0}, {1}, {0, 1}, [0, 1]

}nb .

EXTENDED SCENARIO TREE
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• We consider an assignation function
b as part of the noise and integrate it
in the extended scenario tree T b.

• T b is t−independent if
T b
\ν1

= T b
\ν2
∀ν1, ν2 ∈ Nt

• We define (Pb
τ :T ) as the sub-problem

on horizon Jτ, . . . , T K with assignation
function b.
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Proposition: Assume b is such that b(ν) 6= {0, 1} ∀ν.
Then T b is τ−independent, and (Pb

τ ) can be solved with SDDP.

ASSOCIATION FUNCTION EXAMPLE
We consider the assignation function bτ0 that
keeps binary constraints on sub-horizon J1, τK
and relaxes those constraints on the rest of the
horizon.

å scenario tree T bτ0 is τ−independent, and
we can run SDDP on (Pbτ0

τ+1:T )

å We can use SDDP cuts to represent the ex-
tensive sub-problem final cost function on
horizon J1, τK

Algorithmic scheme:

Solve MILP T g
τ
0

1:τ

Solve (Pbτ0
τ+1:T )

with SDDP

xντ

Cuts

å Relaxed Horizon Heuristic, we can compare
its results with MPC.

Future works:

• Study convergence;

• Exploit specific problem structure (e.g. min-
imal up/down time) to find other compati-
ble assignation functions.
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NUMERICAL RESULTS
We solve the problem with both intraday and day-ahead
markets, and simulate in a rolling horizon. At each step,
we compute decisions by solving (Pt:T ) either with MPC,
or with the relaxed horizon heuristic (τ = 2).
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