

Factory Production and Energy Supply Planning with Multistage Stochastic Optimization

École des Ponts ParisTech

ZOÉ FORNIER^{1,2}, BERNARDO DA COSTA³, DORIAN GROSSO¹, VINCENT LECLÈRE² ¹ METRON, ² CERMICS (ENPC), ³ UFRJ

MOTIVATIONS: STUDY CASE

MATHEMATICAL MODEL

We consider a multistage stochastic problem:

(P)
$$\min_{\boldsymbol{x},\boldsymbol{u},\boldsymbol{b}} \mathbb{E}\left[\sum_{t=1}^{T} L_t(\boldsymbol{x_{t-1}},\boldsymbol{u_t},\boldsymbol{b_t},\boldsymbol{\xi_t})\right]$$
$$\boldsymbol{x_{t+1}} = F_{t+1}(\boldsymbol{x_t},\boldsymbol{u_t},\boldsymbol{b_t},\boldsymbol{\xi_t})$$
$$\boldsymbol{u_t} \in \mathcal{U}(\boldsymbol{x_t},\boldsymbol{\xi_t}) \subset \mathbb{R}^{n_u}$$
$$\boldsymbol{b_t} \in \mathcal{B}(\boldsymbol{x_t},\boldsymbol{\xi_t}) \subset \{0,1\}^{n_b}$$

 $\sigma(\boldsymbol{u_t}, \boldsymbol{b_t}) \subset \sigma(\boldsymbol{\xi_1}, \dots, \boldsymbol{\xi_t})$

 $\forall t$

 $\forall t$

 $\forall t$

 $\forall t$

Let $(\boldsymbol{\xi}_t)_{t \in [T]}$ be a sequence of finitely supported random **variables**. We define a scenario $(\xi_t^{j_t})_{t \in [T]}$ as a realization of $(\boldsymbol{\xi}_t)_{t \in [T]}$, and the scenario tree \mathcal{T} as the collection of all scenarios.

DYNAMIC PROGRAMMING

- Under stage-wise independence of the noises, we reformulate the problem with **dynamic equations**.
- Because the state variables are continuous, classic dynamic programming is limited by the **curse of dimensionality** and is not a reasonable option here.
- If the problem was continuous, SDDP would solve it easily. Unfortunately we have **binary variables**, modeling hard constraints.

BRANCH-AND-BOUND

• **Problem** We must provide the factory with a production and energy supply plan minimizing energy costs over a time horizon (T = 24). Energy is bought in real time or in advance.

• Variables **Continuous**: production, stocks, energy bought, ESS charge/discharge and stocks; **Binary:** $b_t^{ij} = \mathbb{1}_{\{j \text{ produced by } i \text{ at } t\}}$

• Constraints **Dynamic Equations** for stock variables; Shared resources: hard constraints (binary). **Demand**: for each product.

We denote \mathcal{N}_t the set of nodes in \mathcal{T} of depth t. Then a **node** $\nu \in \mathcal{N}_t$ reads its ancestor information from the root:

$$\nu = (a(\nu), \xi_t^{k_t}) = ((\dots(\underbrace{(\emptyset, \xi_1^{k_1})}_{\in \mathcal{N}_1}, \xi_2^{k_2}), \dots, \xi_{t-1}^{k_{t-1}}), \xi_t^{k_t})$$

We can reformulate the problem in its extensive form:

(P_{ext})
$$\min_{x_{\nu}, u_{\nu}, b_{\nu}} \sum_{t=1}^{T} \sum_{\nu \in \mathcal{N}_{t}} \pi_{\nu} L_{t}(x_{\nu}, u_{\nu}, b_{\nu}, \xi_{\nu})$$

$$x_{\nu} = F_{\nu}(x_{a(\nu)}, u_{a(\nu)}, b_{a(\nu)}, \xi_{a(\nu)}) \qquad \forall \nu$$

 $u_{\nu} \in \mathcal{U}(x_{\nu}, \xi_{\nu})$ $\forall \nu$

$$b_{\nu} \in \mathcal{B}(x_{\nu}, \xi_{\nu}) \subset \{0, 1\}^{n_b}$$

- The extensive MILP (P_{ext}) is intractable and cannot be solved with classical solvers.
- We would like to reduce the problem to multiple continuous sub-problem by resorting to branch-andbound methods.
- However, even the relaxed problem are too big to be solved by LP solver ($O(10^{24})$ variables).
 - ► Can we use SDDP to solve them?
 - ► We introduce assignation function:

 $\mathfrak{b}: \mathcal{T} \to \{\{0\}, \{1\}, \{0,1\}, [0,1]\}^{n_b}.$

STATE OF THE ART

Model Predictive Control

Principle: solve deterministic sub-problems, adjusting trajectory as random realizations are revealed. **Pros**:use of deterministic solvers, no stagewise independence. **Cons**: no solution quality guarantee, slow online running time.

• Stochastic Dynamic Programming

Principle: with stagewise independence, we solve the problem with dynamic equations. **Pros**: few assumptions, easily implemented **Cons**: curse of dimensionality.

 $\forall \nu$

• We consider an assignation function \mathfrak{b} as part of the noise and integrate it in the extended scenario tree $\mathcal{T}^{\mathfrak{b}}$.

```
• \mathcal{T}^{\mathfrak{b}} is t-independent if
```

• We define $(\mathbf{P}_{\tau}^{\mathfrak{b}})$ as the sub-problem on horizon $[\![\tau, \ldots, T]\!]$ with assignation

 $\nu_T^{k_5}$

• Stochastic Dual Dynamic Programming

Principle: solves continuous multistage linear stochastic problems by constructing Benders-like cuts. **Pros**: fast in practice, and theoretical guarantee. **Cons**: cannot handle integer variables.

• Stochastic Dual Dynamic integer Programming

Principle: algorithm built on SDDP to solve multistage linear stochastic problems with only binary state variables. **Pros**: Theoretical guarantees. **Cons**: Slow iterations and convergence.

ASSOCIATION FUNCTION EXAMPLE

We consider the assignation function \mathfrak{b}_0^{τ} that keeps binary constraints on sub-horizon $[\![1,\tau]\!]$ and relaxes those constraints on the rest of the horizon.

- \blacktriangleright scenario tree $\mathcal{T}^{\mathfrak{b}_0^{\tau}}$ is τ -independent, and we can run SDDP on $(P_{\tau+1:T}^{\mathfrak{b}_0^{\tau}})$
- ► We can use SDDP cuts to represent the extensive sub-problem final cost function on horizon $\llbracket 1, \tau \rrbracket$

NUMERICAL RESULTS

We solve the problem with both intraday and day-ahead markets, and simulate in a rolling horizon. At each step, we compute decisions by solving $(P_{t:T})$ either with MPC, or with the relaxed horizon heuristic ($\tau = 2$).

Relaxed Horizon Heuristic, we can compare its results with MPC.

Future works:

- Study convergence;
- Exploit specific problem structure (*e.g.* minimal up/down time) to find other compatible assignation functions.

REFERENCES

- [1] M. Golari, N. Fan, and T. Jin. Multistage Stochastic Optimization for Production-Inventory Planning with Intermittent Renewable Energy. *Production and Operations Management*, Mar. 2017.
- M. V. F. Pereira and L. M. V. G. Pinto. Multi-stage stochastic optimization applied to energy planning. *Mathematical Programming*, May 1991.
- [3] J. Zou, S. Ahmed, and X. A. Sun. Stochastic dual dynamic integer programming. Mathematical Programming, May 2019.