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MOTIVATIONS: STUDY CASE
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 Problem We must provide the factory with a pro-
duction and energy supply plan minimizing energy
costs over a time horizon (1" = 24). Energy is bought

in real time or in advance.

Variables

: production, stocks, energy bought, ESS

Horizon T’

charge/discharge and stocks;
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Constraints

Dynamic Equations for stock variables;
Shared resources: hard constraints (binary).

Demand: for each product.

STATE OF THE ART

Model Predictive Control

Principle: solve deterministic sub-problems, adjusting trajectory

as random realizations are revealed.

Pros:use of deterministic solvers, no stagewise independence.
Cons: no solution quality guarantee, slow online running time.

Stochastic Dynamic Programming

Principle: with stagewise independence, we solve the problem ,

with dynamic equations.

Pros: few assumptions, easily implemented

Cons: curse of dimensionality.

Principle: solves continuous multistage linear stochastic prob-

lems by constructing Benders-like cuts.
Pros: fast in practice, and theoretical guarantee.
Cons: cannot handle integer variables.

Principle: algorithm built on SDDP to solve multistage linear

stochastic problems with only binary state variables.

Pros: Theoretical guarantees.

Cons: Slow iterations and convergence.

ASSOCIATION FUNCTION EXAMPLE

We consider the assignation function bj that
keeps binary constraints on sub-horizon [1, 7]
and relaxes those constraints on the rest of the

horizon.

= scenario tree 7% is 7— independent, and

we can run SDDP on (P> A1)

= We can use SDDP cuts to represent the ex-
tensive sub-problem final cost function on

horizon [[1, 7]

Algorithmic scheme:
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w Relaxed Horizon Heuristic, we can compare

its results with MPPC.

e Study convergence;

e Exploit specific problem structure (e.¢. min-
imal up/down time) to find other compati-

ble assignation functions.
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MATHEMATICAL MODEL

We consider a multistage stochastic problem:
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'l DYNAMIC PROGRAMMING

e Under stage-wise independence of the noises, we re-
formulate the problem with dynamic equations.

Because the state variables are continuous, classic dy-
namic programming is limited by the curse of dimen-
sionality and is not a reasonable option here.

If the problem was continuous, SDDP would solve it
easily. Unfortunately we have binary variables, mod-
eling hard constraints.

T as the collection of all

We denote N, the set of nodes in T of depth ¢. Then a
node v € N, reads its ancestor information from the root:
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We can reformulate the problem in its extensive form:
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EXTENDED SCENARIO TREE

BRANCH-AND-BOUND

e The extensive MILP (Pey) is
solved with classical solvers.

and cannot be

) kt—l) kt) e We would like to reduce the problem to multiple
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continuous sub-problem by resorting to branch-and-
bound methods.

e However, even the relaxed problem are too big to be
solved by LP solver (O(10%%) variables).

w (Can we use SDDP to solve them?

= We introduce assignation function:

b: T — {{0}, {1}, {0,1}, [0,1]} .

e We consider an assignation function

t—pruned Tree 72, b as part of the noise and integrate it

0 0 in the extended scenario tree 7.
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T—pruned tree T, § is a MILP

We approximate these
trees with SDDP cuts
to model final cost K
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NUMERICAL RESULTS

We solve the problem with both intraday and day-ahead
markets, and simulate in a rolling horizon. At each step,
we compute decisions by solving (P,.r) either with MPC,
or with the relaxed horizon heuristic (7 = 2).

Setting parameters: solar model on the right and demand in products on the left
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