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OPERATION RESEARCH

Definition (Operation Research)
Operation Research is a discipline that deals with the development
and application of analytical methods to improve decision-making.

O.R. Process

1. Formulating
a problem

2. Writing
a math model

3. Go over aca-
demic literature

4. Implement
an algorithm

5. Test your
algorithm

on real data

Translating reality
in mathematics

Study existing
approaches

Choose a method

Analysis

Reformulate
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OPERATION RESEARCH

OR Tools
• Computer Science
• Business Analytics

• Probability theory
• Statistics
• Data Science

• Graph Theory
• Optimization
• Game Theory
• Simulation

Industrial Applications
• Scheduling problems:

crew scheduling, schools
. . .

• Routing problems:
delivery routes, recycling
tours, SNCF scheduling
. . .

• Multiportfolios
optimization

• Energy dispatch problems
• Waiting rooms in hospital

(Queueing theory)
• Telecom networks

optimization
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PHD SUBJECT

Main Motivation
Be able to give industrial advices regarding renewable investments.

PHD Subject
Optimize the joint production and energy supply planning of an
industrial microgrid.

• What we have worked on
1. Solving the operational problem;
2. Solving the design problem with day-ahead purchases.

• What is next
1. Working on different industrial constraints;
2. Have energy market considerations;
3. Working on a larger scale with a network of industrials.
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GENERAL PROBLEM

Mills

Stocks

Grid

PV

Battery

1 T t

Demand

Energy costs
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OPERATIONAL AND DESIGN PROBLEM

PHD Subject
Optimize the joint production and energy supply planning of an
industrial microgrid.

Industrial Aspects

• A factory with 3 mills and 3
types of products

• A daily demand for each
product

• Shared resources constraints:
some products can’t be
planned simultaneously

• Bounds on production
• Stocks dynamics

Energy Aspects

• A microgrid onsite
i.e., solar panels coupled
with an Energy System
Storage

• A main external grid with
Time of Use prices

• Day-ahead market
(energy can be bought a
day in advance)
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CHALLENGES OVERVIEW

Mathematical Challenges

• Binary variables; otherwise continuous variables and linear
constraints

• Uncertainties over a large horizon, with independence
assumptions

å With uncertainties but without binary variables, an algorithm
exists (SDDP).

å With binary variables but without uncertainties, solvers are
efficient.

å The difficulty lies in considering both uncertainties and binary
variables.
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BINARY VARIABLES

Binary variables: yes/no variables that are necessary to model
physical hard constraints.

Is the machine turned on?

Yes No

1 0

Examples of hard physical
constraints:

• Semi-continuous
variables;

• Shared resources;

• Counters;

• Minimum down/up
times.
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BINARY VARIABLES

• Semi-continuous production: either we don’t produce, or we
produce at least a certain quantity.

•
quantities produced

energy necessary

•
0 qmin qmax

•

•

Discontinuity
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BINARY VARIABLES

• Shared resources: we must choose between producing A or B.

A B

Tool

cA =

{
1 if A is produced;
0 otherwise.

cB =

{
1 if I produce B;
0 otherwise.

We can’t have cA = 1 and cB = 1
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BINARY VARIABLES

• Counters: I can’t turn on/off a machine as many times as I
want

• : turned on (1)
• : turned off (0)

count : number of times I turned on the machine

time

• • • • •

0

• • • •

1

• • • • • • • • •

2

turned on turned on
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BINARY VARIABLES

• Minimum Up-Down time: if I turn on a machine, it must stay
on at least a certain time.

• : turned on (1)
• : turned off (0)
3 time steps minimum

time

• • • • • • • • • • • • • • • • •

3 steps 4 steps 3 steps
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UNCERTAINTIES

Sources: uncertainties can come from the solar energy available,
energy prices, energy demand . . .

Figure: Predictions over the next day on the solar energy available

å Pascal Lu for more information on the forecast algorithm.

Independence assumption: if the noise is stagewise independent
then methods exist to solve the problem (though temporal
variability is ok).

å We are interested in the uncertainty in the gap between
prediction and reality.

Without independence assumption: we can handle an auto
regressive dependence in the constraints. Any dependence in the
costs is hard.
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DYNAMIC PROGRAMMING: AN EXAMPLE

genset grid

1 2 3 4 5

$ genset

$ grid
2 2 2 2 2

1 13 3 3

2

Total cost 16$MWh

time

å The energy stored has a marginal value depending on time.

å We want to evaluate the value Vt(x) of x MWh at t.

Vt(x) = min
decisions

cost of decisions at t + Vt+1(y)
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DYNAMIC PROGRAMMING: AN EXAMPLE
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$ PV
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DYNAMIC PROGRAMMING: AN EXAMPLE

genset grid

PV
Battery

1 2 3 4 5

$ genset

$ grid

$ PV
$ battery

2 2 2 2 2

0 0 0 0 0

1 13 3 3

Battery

? ? ? ? ?

Method 1

0 0 0 0 0 ?

Total cost 8$

Method 2

0 01 1 1

Total cost 7$

Method 3

0 01 11

Total cost 6$

å The energy stored has a marginal value depending on time.

å We want to evaluate the value Vt(x) of x MWh at t.

Vt(x) = min
decisions

cost of decisions at t + Vt+1(y)

y MWh at t + 1

2

Disharge

Disharge

Charge

Disharge

Charge

Disharge

Charge Charge

MWh

time
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ENERGY MARKETS

Day Ahead
Market

Intraday
Market

3 PM 12 AM

BalancingDelivery
Time

No imbalance 1st reserve
2nd reserve

3rd reserve
Balancing mechanism

Imbalance
penalty

D − 1 D D + 3
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CONTEXT

Interest: day ahead cheaper prices, reserve participation . . .

production

demand

PV

Battery
(dis)charge

production

demand

PV

Battery
(dis)charge

t

Energie

Aggregated purchases

maximum

minimum

Day-ahead purchases Day-ahead purchases

Problem: too small to enter those markets.

å aggregate multiple industrial sites (increase model complexity)
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FAIRNESS ISSUES

1. An aggregator groups different clients to enter the market and
buy energy.

2. The energy cost of the group is better than the sum of each
individual costs.

å How to share the benefit?

å How to share the energy?
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IN A NUTSHELL

• We want to evaluate opportunity in investing in EnR + EMS.
• To do so we need to find optimal control strategies (evaluating

value of energy stored).
• Technological roadblock: dealing with binary constraints and

uncertainties.
• To access market, discuss aggregation opportunities.

We need you for use case and data for:
1. Counter, or minimal up / down time
2. Aggregation and fairness
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