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Presentation of the model

Deterministic formulation

min
T∑
t=1

Lt(xt−1, ut , q
PV
t )

s.c xt = Dt(xt−1, ut), x0 fixed ∀t ≥ 1

ut ∈ Ut(xt , q
PV
t ), xt ∈ Xt ∀t ≥ 1

• State variables: xt := (SOCt , s
1
t , s

2
t , s

3
t )

• Controls: ut := (qgridt , φ+t , φ
−
t , (u

ij
t )i ,j∈[3]︸ ︷︷ ︸

∈R+

, (bijt )i ,j∈[3]︸ ︷︷ ︸
∈{0,1}

)

• Instantaneous cost : Lt(xt−1, ut , q
PV
t ) := ptq

grid
t
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Presentation of the model

Deterministic formulation

min
T∑
t=1

Lt(xt−1, ut , q
PV
t )

s.c xt = Dt(xt−1, ut), x0 fixed ∀t ≥ 1

ut ∈ Ut(xt , q
PV
t ), xt ∈ Xt ∀t ≥ 1

• Dynamic equations:

Dt(xt−1, ut) =

{
s jt = s jt−1 − d j

t +
∑

i u
ij
t ∀j

SOCt = SOCt−1 − 1
ρ−φ

−
t + ρ+φ+t

• Initial conditions : s j0 = 0 ∀j , SOC0 = SOCmin
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Presentation of the model

Deterministic formulation

min
T∑
t=1

Lt(xt−1, ut , q
PV
t )

s.c xt = Dt(xt−1, ut), x0 fixed ∀t ≥ 1

ut ∈ Ut(xt , q
PV
t )

, xt ∈ Xt ∀t ≥ 1

• Feasible domain of controls:

Ut(xt , q
PV
t ) =



bij
t ∈ {0, 1} ∀i , j

uijminb
ij
t ≤ uijt ≤ uijmaxb

ij
t ∀i , j

qgridt , φ+t , φ
−
t ≥ 0

φ+t ≤ φ+max φ−t ≤ φ−max

. . .
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Presentation of the model

Deterministic formulation

min
T∑
t=1

Lt(xt−1, ut , q
PV
t )

s.c xt = Dt(xt−1, ut), x0 fixed ∀t ≥ 1

ut ∈ Ut(xt , q
PV
t )

, xt ∈ Xt ∀t ≥ 1

• Controls constraints:

Ut(xt , q
PV
t ) =



. . .∑
j

bijt ≤ 1 1 product per mill

max
i

bi1t + max
i

bi3t ≤ 1 Incompatibility

qloadt ≤ qgridt + qPVt + φ−t − φ+t Load balance
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Presentation of the model

Deterministic formulation

min
T∑
t=1

Lt(xt−1, ut , q
PV
t )

s.c xt = Dt(xt−1, ut), x0 fixed ∀t ≥ 1

ut ∈ Ut(xt , q
PV
t ), xt ∈ Xt ∀t ≥ 1

• State variables’ feasible domain:

Xt =

{
0 ≤ s jt ≤ s jmax ∀j
SOCmin ≤ SOCt ≤ SOCmax
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Complexity result

NP-completeness
• L production lines and C cements; no incompatibility

Proposition 1
Given a set of parameters, and K ∈ R: is there a solution whose
cost is inferior to K ?
The corresponding decision problem is NP-complete.

A polynomial case
• L production lines and C cements

Proposition 2
Given a set of parameters: is there a feasible solution ?
If C is fixed, and all uijmax are independent from i , the
corresponding decision problem is Polynomial.
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Modelization

Stochastic formulation : Hazard Decision

min E

[
T∑
t=1

Lt(xt−1,ut ,qPV
t )

]
s.c xt = Dt(xt−1,ut), x0 fixed ∀t ≥ 1

ut ∈ Ut(xt ,qPV
t ), xt ∈ Xt ∀t ≥ 1

σ(ut) ⊂ σ(qPV
1 , ....,qPV

t )︸ ︷︷ ︸
non-anticipativity constraints

• (qPV
t )t∈[T ] are random variables: assumed independent

• We minimize the expected cost
• We don’t know what happens in the future (after t)
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MPC’s Principle
Algorithm

Algorithm 1: Model predictive control
1 Input: x0, q̂PV solar prediction for the whole horizon
2 for t : 1,...,T do
3 Observe qPV

t realization of solar energy at the current time, and using
the prediction for the future, solve the following deterministic
subproblem:

(u]
t′)t′≥t = argmin

ut ,(ut′ )t′>t

Lt(xt−1, ut , qPV
t ) +

T∑
t′=t+1

Lt(xt′−1, ut′ , q̂
PV
t′ )

xt′ = Dt(xt′−1, ut′) ∈ Xt′

ut′ ∈ Ut′(xt′ , q̂
PV
t′ )

xt = Dt(xt−1, u]
t )

This method will be our reference model.
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Dynamic Programming
Bellman’s principle

• Define the Bellman’s functions Vt(x), a.k.a cost-to-go
function, as the expected optimal cost on [t, . . . ,T ] starting
from x.

• Vt(x)t∈[T ] can be computed recursively backward.

• Vt(x)t∈[T ] cannot usually be exactly computed (e.g. when
there is a continuous number of possible state x), therefore we
must consider interpolations and approximations methods:

I discretization of the space set xD
t ∈ XN

I convex interpolation of (xDt−1, v
xD
t−1

t ) to approximate Vt

7 / 15



Dynamic Programming
Algorithm

Algorithm 2: Stochastic dynamic programming
// Initialization

1 VT+1 := 0
// Backward phase

2 for t : T, T-1,...,1 do
3 for xD

t−1 ∈ XN do
4 for ω realization of qPV

t do
5

v
xDt−1
t += pω min

ut∈Ut (y,qPV
t )

{
Lt(xD

t−1, ut , ω) + Ṽt+1(y)
}

y = Ft(xD
t−1, ut)

6 Define Ṽt+1 convex interpolation of (xD
t , v

xDt
t+1)xDt ∈XN

Curse of dimensionality: O(T .N4.|Ω|t) MILP to solve.
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SDDP : Introduction

• Stochastic Dual Dynamic Programming (SDDP) is a
classic algorithm which solves continuous multistage linear
stochastic problems.

• The algorithm consists in a fixed number of successive steps
involving:
I a forward phase: we randomly draw (ξk

t )t , a scenario, on
which we compute the optimal trajectory (xk

t )t≥0 for the
strategy given by the current cost-to-go approximation.

I a backward phase: we refine our V k−1
t approximation by

constructing new cuts (similar to Benders) from xkt−1.
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Heuristic based on SDDP

• We consider offline time (construction of a decision strategy)
and online time (simulation).

• Compared to DP and MPC, SDDP is very fast.

• However, SDDP solves a convex continuous relaxation of
the problem.

• We aim at finding a hybrid method which takes advantage of
SDDP’s fast computational time, and returns a feasible
solution (with binary constraint).

10 / 15
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Cuts Heuristic

Main Idea : estimate Vt using SDDP cuts.

• SDDP estimates V r
t , the continuous relaxation of Vt

• Given a solar energy scenario (ω1, . . . , ωT ), we compute :

u]t := arg min
ut∈Ut(y ,ωt)

Lt(x
]
t−1, ut , ωt) + V r

t+1(y)

y = Ft(x
]
t−1, ut)

x ]t := Ft(x
]
t−1, u

]
t)

Pros: the offline time amounts to SDDP computation time, the
online time is similar to dynamic programming online time.

Cons: the coarse approximation used may be inadequate to get
feasible solutions.
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2-stage dynamic programming

Main Idea: improving DP using 2-stage problems.

• DP reduces a T -stage problem to T consecutive 1-stage
problems.
• SDDP solves a convex continuous relaxation.

• Instead, let’s consider T − 1 consecutive 2-stage problems:
I non-anticipativity constraint, we need to consider all

realizations at t + 1 and the corresponding decision variables
(×|Ω|t)

I we minimize the sum of
• instantaneous cost at t,
• expected instantaneous cost at t + 1,
• and cost-to-go from t + 2.

Pros : better handling of the binary variables.

Cons : the problem size grows significantly.
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Fitting parameters to data
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Numerical results
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Conclusion and perspectives

In a nutshell:
• we studied the complexity of the deterministic problem;

• we test two classical methods on the stochastic problem: DP
(with convex interpolation) and MPC;

• finally, we developed various heuristics taking advantage of
SDDP for speed and multi-step Bellman equation for better
handling of binary variables.

Futur works:
• incorporate day-ahead problem;
• test more advanced algorithm like SDDiP;
• develop a new heuristic to deal with the few binary variables.
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